一、模型的建立—数据预处理
原始数据中的信息可能以不方便的格式存在,比如“血压”特征。通过拆分列,可以将数据清理得更加结构化和易于处理。将其拆分为“高压”和“低压”可以更容易地获取每个部分的数值,以便进一步分析。这可以帮助医疗领域的研究人员或医生更好地理解患者的生理状况。
将年龄数据分组为不同的年龄段,我们可以更好地理解数据的分布,将连续的年龄值划分为离散的分类,使数据更具可解释性。同时能够帮住我们迅速了解不同年龄段的人数分布情况。
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
plt.rcParams[
博客介绍了2023年中国研究生数学建模竞赛E题中,针对血肿扩张风险相关因素的数据预处理过程。内容包括缺失值检查、异常值分析、归一化操作以及特征处理,特别是对血压、年龄等关键指标的处理方法,旨在为模型建立提供清晰、结构化的数据。
订阅专栏 解锁全文
358

被折叠的 条评论
为什么被折叠?



