Ultralytics YOLO如何使用?详细介绍!

接下来显示的是 YOLO11 预训练的 Detect 模型。Detect、Segment 和 Pose 模型是在COCO数据集上预训练的,而 Classify 模型是在ImageNet数据集上预训练的。

首次使用时,模型会自动从最新的Ultralytics 版本下载。

在这里插入图片描述

  • mAPval 数值是在 COCO val2017 数据集。复制方式 yolo val detect data=coco.yaml device=0

一、训练

在 COCO8 数据集上对 YOLO11n 进行 100次训练,图像大小为 640。有关可用参数的完整列表,请参阅配置页面。

自建立Python文件:

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.yaml")  # build a new model from YAML
model = YOLO("yolo11n.pt")  # load a pretrained model (recommended for training)
model = YOLO("yolo11n.yaml").load("yolo11n.pt")  # build from YAML and transfer weights

# Train the model
results = model.train(data="coco8.yaml", epochs
### Ultralytics YOLO 训练参数设置技巧与最佳实践 #### 数据增强配置 为了提高YOLO系列模型的表现,采用强大的数据增强技术至关重要。具体来说,Mosaic和MixUp这两种方法能够显著改善模型性能[^1]。Mosaic是一种高效的数据增强方式,通过组合四张图片来创建新的训练样本;而MixUp则通过对两张不同图像及其标签进行线性插值操作。 对于Ultralytics-YOLOv3而言,在训练过程中引入上述两种增强手段可以有效促进特征学习能力并减少过拟合现象的发生概率。值得注意的是,在接近收敛阶段(即最后15个epoch),应当停止使用这些复杂的增强措施以便更好地评估模型的真实泛化水平。 #### 初始权重选择 当应用了强有力的在线数据扩充方案之后,研究者观察到利用ImageNet预训练初始化网络反而不利于最终精度指标的提升。因此建议直接从零开始训练整个架构而不依赖任何外部迁移学习资源。 #### 超参调整策略 鉴于YOLOv4以及YOLOv5可能存在针对特定应用场景下的过度调优情况,故此决定以较为原始版本——YOLOv3为基础构建新框架[^2]。尽管如此,这并不意味着完全忽视现代优化算法所带来的潜在增益。相反地,应该积极探索诸如自适应矩估计(Adam)等先进梯度下降变体的应用潜力,并合理设定其超参数如初始学习率、动量系数等。 以下是Python代码片段展示如何在PyTorch环境中定义一个简单的YOLO训练循环: ```python import torch.optim as optim from yolov3 import YOLOv3 # 假设这是您导入YOLO v3的方式 model = YOLOv3() optimizer = optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999)) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1) for epoch in range(num_epochs): model.train() for images, targets in train_loader: optimizer.zero_grad() outputs = model(images) loss = compute_loss(outputs, targets) loss.backward() optimizer.step() scheduler.step() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旅途中的宽~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值