Eigen库的使用(一)矩阵操作及代数运算

Eigen是一个C++开源线性代数库,提供了快速的有关矩阵的线性代数计算

我用的编辑器是kdevelop,使用前需要先把库进行下载与导入
下载:sudo apt-get install libeigen3-dev
导入时的路径选择:/usr/include/eigen3/(在language support处导入),之后在命令行输入:sudo ln -sf eigen3/Eigen Eigen 和sudo ln -sf eigen3/unsupported unsupported,这两个指令都是用于创建链接

Eigen指令:
#include <Eigen/Core>
Eigen核心部分
#include <Eigen/Dense>
稠密矩阵的代数运算(例如逆、特征值等)
矩阵生成:
Matrix<float,2,3> matrix_23; 生成一个名为 matrix_23,数据类型为float,2行3列的矩阵
Vector3d v_3d;与Matrix<float,3,1> v_3d; 都是生成一个名为v_3d的, 三行一列的矩阵(三维向量)
Matrix3d matrix_33 = Matrix3d::Zero(); 生成一个名为 Matrix_33,数据类型为double,3行3列的矩阵,并且将矩阵初始化为0
Matrix<double, Dynamic, Dynamic> matrix_dynameic;或MatrixXd matrix_x; 生成一个行和列不确定的动态矩阵

矩阵操作:
matrix_23 <<1,2,3,4,5,6; 一行一行写入
matrix_33 = Matrix3d :: Random(); 让3x3的double型矩阵的值为随机值
cout<<“matrix 2x3 from 1 to 6:\n”<<matrix_23<<endl; 输出整个矩阵
cout<<“print matrix 2x3:”<<endl;
for (int i=0;i<2;i++){
for (int j=0;j<3;j++) cout<<matrix_23(i,j)<<"\t";
cout<<endl; } 一个个输出
v_3d<<1,2,3; 写入列向量
cout<<v_3d[0]<<endl; 按照数组的方法读取列向量的值
Matrix<double,2,1> result = matrix_23.cast() * v_3d;
这里要注意,数据类型必须相同
cout<<result<<endl;
cout<<matrix_23.transpose()<<endl; 转置
cout<<“sum”<<matrix_23.sum()<<endl; 求和
cout<<“trace”<<matrix_23.trace()<<endl; 求迹
cout<<“times 10:”<<matrix_23*10<<endl; 数乘
cout<<“inverse”<<matrix_33.inverse()<<endl; 求逆
cout<<“det”<<matrix_33.determinant()<<endl; 求行列式

SelfAdjointEigenSolver<Matrix3d> eigen_solver(matrix_33.transpose() * matrix_33); 这一步是把矩阵转换成一个和它很相似的矩阵,用于更快的求解出特征值
cout<<"eigen values=\n"<<eigen_solver.eigenvalues()<<endl; 特征值
cout<<"eigen vectors=\n"<<eigen_solver.eigenvectors()<<endl; 归一化后的特征向量(列向量)

Matrix<double,50,50> matrix_NN=MatrixXd::Random(50,50);
matrix_NN=matrix_NN*matrix_NN.transpose();
Matrix<double,50,1> v_Nd=MatrixXd::Random(50,1);
Matrix<double,50,1> x=matrix_NN.inverse() * v_Nd;
cout <<“x=”<<x.transpose()<<endl; 直接用求逆的方法来解方程,速度慢

x=matrix_NN.colPivHouseholderQr().solve(v_Nd);
cout<<"x="<<x.transpose()<<endl;    用QR分解的方法求解,速度快


x=matrix_NN.ldlt().solve(v_Nd);
cout<<"x="<<x.transpose()<<endl;  如果是正定矩阵,还可以用cholesky分解来求解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值