归纳法证明的例子

博客介绍了如何使用归纳法证明计算前n个自然数和的公式Sum(n) = 1/2 * n * (n + 1)。首先验证公式对n=1的情况成立,然后通过假设公式对n有效来证明对n+1也成立,从而完成归纳证明。
摘要由CSDN通过智能技术生成

数学家发现能有一个简洁的公式来计算许多数的和是很有用处的。在本例中,挑战是找出计算前n个计数数的和的公式。

例如,只有第1个数的和是1,前2个数的和是3(即1+2),前3个数的和是6(即1+2+3),前4个数的和是10(即1+2+3+4),等等。

一个刻画这个模式的可能的公式是:
S u m ( n ) = 1 2 n ( n + 1 ) Sum(n)=\frac{1}{2}n(n+1) Sum(n)21n(n1)

这里Sum(n)代表前n个自然数的和。换言之,如果我们想要找出前n个数的和,那么我们只要把那个数n代入上面的公式就可以得到答案。

用归纳法可以证明这个公式对直至无穷大的每一个数都成立。

第一步是证明这个公式对第1个情形,即n=1,是成立的。这是很简单的,因为我们知道只有第1个数的和是1,而如果我们将n=1代入这个可能的公式,得到的结果是正确的:
S u m ( n ) = 1 2 n ( n + 1 ) Sum(n)=\frac{1}{2}n(n+1) Sumn2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值