数论-引言

勾股数组

本原勾股数组是一个三元组(a,b,c)
满足a^{2}+b^{2}=c^{2}
且a,b,c没有公因数

具有性质:
1.a与b奇偶性不同,c为偶数.一般总是取a是奇数,b是偶数
2.c-b, c+b没有公因数,且c-b,c+b自身都是平方数

具有定理:
每个本原勾股数组(a, b, c)[其中a为奇数,b为偶数]
可从如下公式得出
a = st, b = (s^{2} - t^{2}) / 2, c = (s^{2} + t^{2}) / 2
其中s > t >= 1, s, t是没有公因数的奇数

勾股数组与单位圆

定理:
圆x^{2}+y^{2}=1上的坐标是有理数的点都可由公式
(x, y)=[(1-m^{2}) / (1+m^{2}), 2*m / (1+m^{2})]得到.
m取有理数值.[(-1, 0)例外]

费马大定理

n>=3时,
a^{n}+b^{n}=c^{n}
没有正整数解

整除性与最大公因数

定理:
要计算两个整数a与b的最大公因数,
先令r_{-1}=a且r_{0}=b
然后计算相继的商和余数
r_{i-1}=q_{i+1}*r_{i} + r_{i+1} 	i=0,1,2,3...
直到某余数r_{n+1}为0.
最后的非零余数r_{n}就是a与b的最大公因数

线性方程与最大公因数

设a与b是非零整数,
g=gcd(a, b)
方程
ax+by=g
总是有一个整数解(x_{1}, y_{1})[可由欧几里得算法得到]
则方程的通解为
(x_{1}+k*b/g,y_{1}-ka/g)
k可为任意整数

因数分解与算术基本定理

- 引理
令p是素数
设p整除乘积ab
则p整除a或b

- 定理
设素数p整除乘积a_{1}a_{2}...a_{r}
则p整除a_{1}, a_{2}, ..., a_{r}中至少一个因数

- 定理
每个整数n>=2可唯一分解为素数乘积
n = p_{1}p_{2}...p_{r}

同余式

- 线性同余式定理
设a,c与m是整数
m>=1
且设g=gcd(a, m)
1.如g不能整除c,则同余式ax≡c(mod m)没有解
2.如g能整除c,则同余式ax≡c(mod m)恰好有g个不同的解
先求
au+mv=g
的一个解(u_{0}, v_{0})
则x_{0} = c/g * u_{0}是ax≡c(mod m)的解
不同余解的完全集由
x≡x_{0}+k* (m/g)(mod m) k=0,1,2,...,g-1
- 模p多项式根定理
设p为素数
f(x)=a_{0}*x^{d}+a_{1}*x^{d-1}+...+a_{d}
是次数为d>=1的整系数多项式
且p不整除a_{0}
则同余式f(x)≡0(mod p)
最多有d个模p不同余的解

什么是数论

- 素数
素数是一个整数p>1
仅有因数1与p

整除性与最大公因数

- 最大公因数
要计算两个整数a与b的最大公因数,
先令r_{-1}=a, r_{0}=b
r_{i-1}=q_{i+1}*r_{i} + r_{i+1} i=0,1,2,....
直到r_{n+1}为0,最后的r_{n}是a与b的最大公因数
举例:
gcd(36, 132)
1.132 = 3*36 + 24
2.36 = 1*24 + 12
3.24 = 2*12 + 0
故gcd(36, 132) = 12

线性方程与最大公因数

因数分解与算术基本定理

- 素数
对整数p>=2
它的正因数仅有1与p
称p为素数
- 合数
对整数m, m>=2, m不是素数
称m为合数

- 引理
令p为素数,设p整除乘积ab
则p整除a或b
- 定理
设素数p整除乘积a_{1}a_{2}...a_{r}
则p整除a_{1},a_{2},...,a_{r}中至少一个因数

- 偶数世界
参与的数必须为偶数
E = {..., -8, -6, -4, -2, 0, 2, 4, 6, ...}
偶数的和,差,积仍是偶数
如存在k属于E,使得n=mk[m,n也属于E]
称为m E-整除n

E-素数
对n属于E,找不到m属于E,使得m E-整除n时,称n为E-素数

- 定理
每个整数n>=2可唯一分解成素数乘积
n=p_{1}p_{2}...p_{r}

上述定理包含两个断言
1.数n可以某种方式分解成素数乘积
n=2,3,4时,结论成立
假设已证明了对直到N的每个数n断言成立
意味着已经证明了每个数n<=N可分解为素数的乘积
对N+1
若N+1已经是素数,明显
若N+1是合数,表明其可分解为N+1=n_{1}n_{2} 2<=n_{1},n_{2}<=N
对n_{1},n_{2}断言成立
故,N+1可分解为素数乘积
总结.
结论成立

2.仅有一种这样的因数分解[因子顺序调整仍然视为同一分解]
可用归纳证明,但直接证明
设能将n分解成两种形式的素数乘积
即n=p_{1}p_{2}...p_{r}=q_{1}q_{2}...q_{s}
观察p_{1} | n
p_{1} | q_{1}q_{2}...q_{s}
由素数整除性质
p_{1}必整除q_{i}中的至少一个
如重排q_{i}
使得p_{1} | q_{1}
但q_{1}是素数,故,p_{1}=q_{1}
如此重复消去所有p_{i}后,左边为1.右边此时也必为1
如此重复消去所有q_{i}后,右边为1.左边此时也必为1
故,p_{i}个数和q_{i}一致
综合,得证

如n本身不是素数,则必有整除n的素数p<=sqrt(n)
- 要将任何整数n表示成素数乘积
要将n表示成素数乘积
用小于等于sqrt(n)的每个数[或正好每个素数]试除它
如没求得整除n的整数,
则n本身是素数
否则,求得的第一个因数是素数p
分解得n=pm
然后对m重复此过程

大整数的素数分解按上述方法求得答案效率极低,耗时几乎不可能
- 如何分辨已知数n是素数还是合数?
- 如果n是合数,如何将它分解成素数的乘积?

同余式

如m整除a-b,就说a与b模m同余,并记为之
a ≡ b (mod m)
特别地,如果a除以m的余数r[0<=r<m]
则a与r模m同余

数m叫做同余式的模
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

raindayinrain

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值