12、行列式:定义、性质与计算

行列式:定义、性质与计算

1. 引言

在数学领域,行列式是一个重要的概念,它在多个方面都有着广泛的应用,如线性代数、几何和微积分等。本文将深入探讨行列式的定义、相关映射的性质以及行列式的计算方法。

2. 相关概念的定义

2.1 多重线性映射

设 (E_1, \cdots, E_n) 和 (F) 是域 (K) 上的向量空间((n \geq 1))。若函数 (f: E_1 \times \cdots \times E_n \to F) 满足在每个参数上都是线性的(保持其他参数固定),则称 (f) 为多重线性映射(或 (n) - 线性映射)。具体而言,对于任意 (i)((1 \leq i \leq n)),所有 (x_1 \in E_1, \cdots, x_{i - 1} \in E_{i - 1}, x_{i + 1} \in E_{i + 1}, \cdots, x_n \in E_n),所有 (x, y \in E_i) 以及所有 (\lambda \in K),有:
[
\begin{align }
f(x_1, \cdots, x_{i - 1}, x + y, x_{i + 1}, \cdots, x_n) &= f(x_1, \cdots, x_{i - 1}, x, x_{i + 1}, \cdots, x_n) + f(x_1, \cdots, x_{i - 1}, y, x_{i + 1}, \cdots, x_n)\
f(x_1, \cdots, x_{i - 1}, \lambda x, x_{i + 1}, \cdots, x_n) &= \lambda f(x_1

内容概要:本文详细介绍了如何使用Hugging Face Transformers库进行大模型推理,涵盖环境配置、模型下载、缓存管理、离线使用、文本生成、推理pipeline及模型量化技术。重点讲解了使用LLMs进行自回归生成的核心流程,包括token选择策略、生成参数配置(如max_new_tokens、do_sample)、填充方式(左填充的重要性)以及常见陷阱的规避方法。同时深入探讨了多种量化技术(如GPTQ、AWQ、bitsandbytes的4位/8位量化),并通过实例演示了如何加载本地模型、应用聊天模板、结合Flash Attention优化性能,并实现CPU-GPU混合卸载以应对显存不足的问题。; 适合人群:具备Python编程基础和深度学习基础知识,熟悉Transformer架构,从事NLP或大模型相关工作的研究人员、工程师和技术爱好者;尤其适合需要在资源受限环境下部署大模型的开发者。; 使用场景及目标:①掌握Hugging Face Transformers库的核心API,实现大模型的本地加载高效推理;②理解和避免大模型生成过程中的常见问题(如输出过短、重复生成、填充错误等);③应用量化技术降低大模型内存占用,实现在消费级GPU或CPU上的部署;④构建支持批量处理和多模态任务的推理流水线。; 阅读建议:此资源理论实践紧密结合,建议读者边阅读边动手实践,复现文中的代码示例,并尝试在不同模型和硬件环境下进行调优。重点关注生成配置、量化参数和设备映射策略,结合具体应用场景灵活调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值