行列式:定义、性质与计算
1. 引言
在数学领域,行列式是一个重要的概念,它在多个方面都有着广泛的应用,如线性代数、几何和微积分等。本文将深入探讨行列式的定义、相关映射的性质以及行列式的计算方法。
2. 相关概念的定义
2.1 多重线性映射
设 (E_1, \cdots, E_n) 和 (F) 是域 (K) 上的向量空间((n \geq 1))。若函数 (f: E_1 \times \cdots \times E_n \to F) 满足在每个参数上都是线性的(保持其他参数固定),则称 (f) 为多重线性映射(或 (n) - 线性映射)。具体而言,对于任意 (i)((1 \leq i \leq n)),所有 (x_1 \in E_1, \cdots, x_{i - 1} \in E_{i - 1}, x_{i + 1} \in E_{i + 1}, \cdots, x_n \in E_n),所有 (x, y \in E_i) 以及所有 (\lambda \in K),有:
[
\begin{align }
f(x_1, \cdots, x_{i - 1}, x + y, x_{i + 1}, \cdots, x_n) &= f(x_1, \cdots, x_{i - 1}, x, x_{i + 1}, \cdots, x_n) + f(x_1, \cdots, x_{i - 1}, y, x_{i + 1}, \cdots, x_n)\
f(x_1, \cdots, x_{i - 1}, \lambda x, x_{i + 1}, \cdots, x_n) &= \lambda f(x_1
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



