题意
给定一个数轴上的 n 个区间,要求在数轴上选取最少的点使得第 i 个区间 [ai, bi] 里至少有 ci 个点
输入
输入第一行一个整数 n 表示区间的个数,接下来的 n 行,每一行两个用空格隔开的整数 a,b 表示区间的左右端点。1 <= n <= 50000, 0 <= ai <= bi <= 50000 并且 1 <= ci <= bi - ai+1。
输出
输出一个整数表示最少选取的点的个数
思路
这道题既可以按右端点进行排序然后贪心
也可以根据题意构造不等式组
• 记 sum[i] 表示数轴上 [0, i] 之间选点的个数
• 对于第 i 个区间 [ai,bi] 需要满足sum[bi]-sum[ai-1]>=ci
另外sum[i]表示第i个点选与不选,所以
0<=sum[i]-sum[i-1]<=1
因为是求的差分约束系统的最小解,所以是下解,需要转化为 ≥ 不等式组跑最长路,答案即sum[max{bi}]
总结
求解差分约束系统,都可以转化成图论中单源最短路、最长路问题,(由于差分方程与最短路中的松弛操作相似,所以对于差分约束方程可以构造边和点以及初始dis[s],构造差分约束的时候还需要注意一些细节,保证构造的数组有意义
代码
#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
#include<cstdio>
using namespace std;
#define inf 100000000
vector<pair<int,int> >ve[50010];
queue<int>q;bool vis[50010];int dis[50010];int n;
void spfa(int s)
{
while(q.size())q.pop();
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++)
dis[i]=-inf;
dis[s]=0;vis[s]=1;q.push(s);
while(q.size())
{
int x=q.front();q.pop();
vis[x]=0;
for(int i=0;i<ve[x].size();i++)
{
if(dis[ve[x][i].first]<dis[x]+ve[x][i].second)
{
dis[ve[x][i].first]=dis[x]+ve[x][i].second;
if(!vis[ve[x][i].first])
q.push(ve[x][i].first),vis[ve[x][i].first]=1;
}
}
}
}
int main()
{
int m;scanf("%d",&m);int maxb=0;
for(int i=1;i<=m;i++)
{
int a,b,c;scanf("%d%d%d",&a,&b,&c);a++;b++;maxb=max(maxb,b);
ve[a-1].push_back(make_pair(b,c));
}n=maxb;
for(int i=1;i<=maxb;i++)
{
ve[i-1].push_back(make_pair(i,0));
ve[i].push_back(make_pair(i-1,-1));
}spfa(0);
cout<<dis[maxb]<<endl;
return 0;
}