【Week11作业 D】必做题11-4【模拟】

题意:

东东和他的女朋友(幻想的)去寿司店吃晚餐(在梦中),他发现了一个有趣的事情,这家餐厅提供的 n 个的寿司被连续的放置在桌子上 (有序),东东可以选择一段连续的寿司来吃

东东想吃鳗鱼,但是东妹想吃金枪鱼。核 平 起 见,他们想选择一段连续的寿司(这段寿司必须满足金枪鱼的数量等于鳗鱼的数量,且前一半全是一种,后一半全是另外一种)我们用1代表鳗鱼,2代表金枪鱼。

比如,[2,2,2,1,1,1]这段序列是合法的,[1,2,1,2,1,2]是非法的。因为它不满足第二个要求。

东东希望你能帮助他找到最长的一段合法寿司,以便自己能吃饱。


思路:

用num1和num2来记录一串连续的1和2的个数,用now1和now2来表示当前索引之前的区间是全1还是全2。
若在区间1里又读到1,则num1++;否则读到了2,此时区间可能为12或212,要更新答案为之前的12相等个数,然后清空开始的2的个数,让num2=1,并记录当前区间为2,即now2=1,now1=0。区间2同理。


总结:

一道模拟题,考察对连续区间的处理。


代码:

#include <iostream>
using namespace std;

int n;
int a[100010];
int ans=0;	//有几个1,即ans为答案的一半 
int num1=0,num2=0;	//当前索引i之前的区间有多少1和2 
bool now1=0,now2=0;	//之前区间是1还是2	
int main()
{
	cin>>n;
	for(int i=0;i<n;i++)
		cin>>a[i];
	if(a[0]==1)	num1++,now1=1;
	else if(a[0]==2)	num2++,now2=1;
	for(int i=1;i<n;i++)
	{
		if(a[i]==1)
		{
			if(now1)	num1++;
			if(now2)	//到新区间,更新ans,清空另一个数 
			{
				ans=max(ans,min(num1,num2));
				num1=1;
				now1=1,now2=0; 
			}
		}
		else if(a[i]==2)
		{
			if(now2)	num2++;
			if(now1)
			{
				ans=max(ans,min(num1,num2));
				num2=1;
				now1=0,now2=1;
			}
		}
	}
	//处理结尾的两个区间
	ans=max(ans,min(num1,num2)); 
	cout<<ans*2<<endl;
}
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值