题意:
衣食无忧的 Q老师 有一天突发奇想,想要去感受一下劳动人民的艰苦生活。
具体工作是这样的,有 N 块砖排成一排染色,每一块砖需要涂上红、蓝、绿、黄这 4 种颜色中的其中 1 种。且当这 N 块砖中红色和绿色的块数均为偶数时,染色效果最佳。
为了使工作效率更高,Q老师 想要知道一共有多少种方案可以使染色效果最佳,你能帮帮他吗?
第一行为 T,代表数据组数。(1 ≤ T ≤ 100)
接下来 T 行每行包括一个数字 N,代表有 N 块砖。(1 ≤ N ≤ 1e9)
输出满足条件的方案数,答案模 10007。
思路:
令A[i]表示i个格子,红绿均为偶数的染色方案数;
B[i]表示i个格子,红绿均为奇数的染色方案数;
C[i]表示i个格子,红绿有一个为偶数的染色方案数。
则dp转移方程为:
A[i]=2* A[i-1]+C[i-1], B[i]=2* B[i-1]+C[i-1], C[i]=2* A[i-1]+2* B[i-1]+2* C[i-1]。
可以得出矩阵快速幂:
通过矩阵快速幂的板子(记得取余10007)可以计算出中间矩阵[2 0 1 0 2 1 2 2 2]的n-1次方,最后答案就是A[N]。
总结:
一道矩阵快速幂优化dp的题目,在列出dp转移方程的基础上使用了矩阵快速幂来优化。
代码:
#include <iostream>
#include <string.h>
using namespace std;
int t,n;
const int m=10007,N=3;
struct Matrix
{
int x[N][N];
Matrix operator * (const Matrix &t) const
{
Matrix ret;
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
ret.x[i][j]=0;
for(int k=0;k<N;k++)
{
ret.x[i][j]+=x[i][k]*t.x[k][j];
ret.x[i][j]%=m;
}
}
}
return ret;
}
Matrix ()
{
memset(x,0,sizeof(x));
}
Matrix (const Matrix &t)
{
memcpy(x,t.x,sizeof(x));
}
};
Matrix quick_pow(Matrix a,int x)
{
Matrix ret;
for(int i=0;i<N;i++)
for(int j=0;j<N;j++)
ret.x[i][j]=0;
for(int i=0;i<N;i++)
ret.x[i][i]=1;
while(x)
{
if(x&1)
ret=ret*a;
a=a*a;
x>>=1;
}
return ret;
}
int main()
{
cin>>t;
while(t--)
{
cin>>n;
int init[3]={2,0,2};
//int a1=2,b1=0,c1=2;
Matrix ma;
ma.x[0][0]=2,ma.x[0][1]=0,ma.x[0][2]=1;
ma.x[1][0]=0,ma.x[1][1]=2,ma.x[1][2]=1;
ma.x[2][0]=2,ma.x[2][1]=2,ma.x[2][2]=2;
if(n==1)
cout<<2<<endl;
else
{
Matrix mat=quick_pow(ma,n-1);
int ans=0;
for(int i=0;i<3;i++)
ans+=mat.x[0][i]*init[i],ans=ans%m;
cout<<ans<<endl;
}
}
}