【Week14作业 D】Q老师染砖【矩阵快速幂优化dp】

题意:

衣食无忧的 Q老师 有一天突发奇想,想要去感受一下劳动人民的艰苦生活。
具体工作是这样的,有 N 块砖排成一排染色,每一块砖需要涂上红、蓝、绿、黄这 4 种颜色中的其中 1 种。且当这 N 块砖中红色和绿色的块数均为偶数时,染色效果最佳。
为了使工作效率更高,Q老师 想要知道一共有多少种方案可以使染色效果最佳,你能帮帮他吗?

第一行为 T,代表数据组数。(1 ≤ T ≤ 100)
接下来 T 行每行包括一个数字 N,代表有 N 块砖。(1 ≤ N ≤ 1e9)

输出满足条件的方案数,答案模 10007。


思路:

令A[i]表示i个格子,红绿均为偶数的染色方案数;
B[i]表示i个格子,红绿均为奇数的染色方案数;
C[i]表示i个格子,红绿有一个为偶数的染色方案数。
则dp转移方程为:
A[i]=2* A[i-1]+C[i-1], B[i]=2* B[i-1]+C[i-1], C[i]=2* A[i-1]+2* B[i-1]+2* C[i-1]。
可以得出矩阵快速幂:
在这里插入图片描述
通过矩阵快速幂的板子(记得取余10007)可以计算出中间矩阵[2 0 1 0 2 1 2 2 2]的n-1次方,最后答案就是A[N]。


总结:

一道矩阵快速幂优化dp的题目,在列出dp转移方程的基础上使用了矩阵快速幂来优化。


代码:

#include <iostream>
#include <string.h>
using namespace std;

int t,n;
const int m=10007,N=3;
struct Matrix
{
	int x[N][N];
	Matrix operator * (const Matrix &t)	const
	{
		Matrix ret;
		for(int i=0;i<N;i++)
		{
			for(int j=0;j<N;j++)
			{
				ret.x[i][j]=0;
				for(int k=0;k<N;k++)
				{
					ret.x[i][j]+=x[i][k]*t.x[k][j];
					ret.x[i][j]%=m;
				}
			}
		}
		return ret;
	}
	Matrix ()
	{
		memset(x,0,sizeof(x));
	}
	Matrix (const Matrix &t)
	{
		memcpy(x,t.x,sizeof(x));
	}
};
Matrix quick_pow(Matrix a,int x)
{
	Matrix ret;
	for(int i=0;i<N;i++)
		for(int j=0;j<N;j++)
			ret.x[i][j]=0;
	for(int i=0;i<N;i++)
		ret.x[i][i]=1;
	while(x)
	{
		if(x&1)
			ret=ret*a;
		a=a*a;
		x>>=1;
	}
	return ret;
}
int main()
{
	cin>>t;
	while(t--)
	{
		cin>>n;
		int init[3]={2,0,2};
		//int a1=2,b1=0,c1=2;
		Matrix ma;
		ma.x[0][0]=2,ma.x[0][1]=0,ma.x[0][2]=1;
		ma.x[1][0]=0,ma.x[1][1]=2,ma.x[1][2]=1;
		ma.x[2][0]=2,ma.x[2][1]=2,ma.x[2][2]=2;
		if(n==1)
			cout<<2<<endl;
		else
		{
			Matrix mat=quick_pow(ma,n-1);
			int ans=0;
			for(int i=0;i<3;i++)
				ans+=mat.x[0][i]*init[i],ans=ans%m;
			cout<<ans<<endl;
		}
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值