numpy手写BP神经网络——分类问题


前言

善始者繁多,克终者盖寡。

一、问题描述

numpy手写BP神经网络中我们构建了一个形状为“5 *10 *10 * 5”的BP神经网络,该模型包含2个隐含层,并且使用“独热编码”方式实现了多分类,但是分类效果不佳,其预测准确率仅为27%

1.1 模型预测准确率不高的原因

资源文件已上传,可下载使用。
我们希望通过“ABCDE”五项指标测量被试的编程能力,对数据进行归一化后,通过熵权法离差最大化法求出各项指标的权重和,使用组合赋权法得到了每位被试的综合评分,现依据被试的综合评分为其编程能力划分等级。等级描述如图所示:
在这里插入图片描述
numpy手写BP神经网络中我们构建的BP神经网络如图所示,我们希望输入5项指标的数据后直接返回被试的编程能力等级,但是,我们构建的51010*5的预测模型有误,它将连续性的数据转换为了离散型数据
在这里插入图片描述

以等级“弱”为例,当被试综合得分在0-0.2之间时,我们认为被试的编程能力弱,但是在上述510105的预测模型中,被试输出为[1,0,0,0,0]时才被认为是编程能力弱;
以等级“一般”为例,当被试综合得分在0.4-0.6之间时,我们认为被试的编程能力一般,但是在上述5
10105的预测模型中,被试输出为[0,0,1,0,0]时才被认为是编程能力一般。
在这里插入图片描述

综上所述,模型预测效果差的原因是:BP神经网络模型构建的不对!!!

1.2 解决方案

对于连续型数据的分类问题,BP神经网络的输出层只需1个神经元即可,先由BP神经网络输出被试的综合得分再对其进行分类。
也就是说我们将连续型数据的分类问题转换为了回归+分类的问题。在1.1神经网络模型的基础上,删减输出层神经元的个数,构建如图所示的神经网络模型:
在这里插入图片描述

二、python代码

2.1 BP神经网络工作流程

BP神经神经网络工作时主要有四个步骤,详细信息参照numpy手写BP神经网络

前向传播-》计算误差-》后向传播-》-更新权重

2.2 初始化参数

    '''
        input,hidden,output分别表示输入层、隐含层、输出层神经元的个数
    '''
    def __init__(self,input,hidden,output):
        self.weight1 = numpy.random.randn(input,hidden)
        self.weight2 = numpy.random.randn(hidden,hidden)
        self.weight3 = numpy.random.randn(hidden,output)
        #准确度,训练后预测正确数目与样本总数之比
        self.accuracy = []
        #精确度,对训练结果而言,模型正确预测某一类别的样本数与模型预测为该类的样本数之比
        self.precision = []
        #召回率,对原始样本而言,样本中某个类别有多少被正确预测了
        self.recall = []
        #损失值
        self.loss = []

2.3 前向传播

2.3.1 激活函数-sigmod

在隐含层和输出层均使用sigmod激活函数。sigmod函数用于前向传播,公式为:
在这里插入图片描述

    #sigmod激活函数
    def sigmod(self,x):
        return 1/(1 + numpy.exp(-x))

2.3.2 前向传播代码

注意:在前向传播中隐含层、输出层均使用sigmod激活函数!!!

    #前向传播
    def forward(self, data):
        #存储每一层的输入和输出
        self.hidden1_input = numpy.dot(data, self.weight1)
        self.hidden1_output = self.sigmod(self.hidden1_input)

        self.hidden2_input = numpy.dot(self.hidden1_output,self.weight2)
        self.hidden2_output = self.sigmod(self.hidden2_input)

        self.output_input = numpy.dot(self.hidden2_output,self.weight3)
        self.output_output = self.sigmod(self.output_input)
        return self.output_output

2.4 反向传播(最重要步骤)

2.4.1 激活函数sigmod导数

反向传播包含了2.1中“计算误差-》后向传播-》-更新权重”三个操作,sigmod函数导数用于后向传播,公式为:

在这里插入图片描述

    #sigmod函数的导数
    def sigmod_derivative(self, x):
        return x * (1 - x)

2.4.2 损失函数-方差

损失函数反映了模型实际输出值与真实值之间的差异,根据经验,使用方差作为1.2中BO神经网络的损失函数,方差公式为:
在这里插入图片描述

y表示数据中某记录的真实值(标签);
p表示模型对某记录的输出值(实际值/预测值)。

    #使用均方差作为损失函数
    def loss_mse(self,x,y):
        return 1/2*numpy.sum((x-y)*(x-y))

2.4.3 反向传播代码

    #后向传播
    def backward(self, data, label, learning_ration):
        #首先计算误差(损失),交叉熵的导函数
        output_error = self.output_output - label
        #输出层误差项(包含了误差、激活函数导数两部分信息)
        output_delta = output_error * self.sigmod_derivative(self.output_output)
        #将输出层的误差传入隐藏层2
        hidden2_error = numpy.dot(output_delta,self.weight3.T) * self.sigmod_derivative(self.hidden2_output)
        #将隐藏层2的误差传入隐藏层1
        hidden1_error = numpy.dot(hidden2_error,self.weight2.T) * self.sigmod_derivative(self.hidden1_output)

        #三层误差已经得出,可以开始更新权重了
        self.weight1 -= numpy.dot(data.T,hidden1_error) * learning_ration
        self.weight2 -= numpy.dot(self.hidden1_output.T, hidden2_error) * learning_ration
        self.weight3 -= numpy.dot(self.hidden2_output.T, output_error) * learning_ration

2.5 训练模型

训练模型实际上就是重复执行前向传播、后向传播,以获取最优的权重值(此模型中未引入偏置)。在每执行一次“前向传播+后向传播”的同时,记录下此时模型的损失值(通过损失函数求得)和预测准确率。

    #训练数据集
    def train(self,data,label,learning_ration,epoch):
        for i in range(epoch):
            output = self.forward(data)
            self.backward(data, label, learning_ration)

            loss = self.loss_mse(label,output)
            # loss = self.loss_cross_entropy(label, output)
            self.loss.append(loss)

            accuary = self.caculate_accuracy_primal(output,label)
            self.accuracy.append(accuary)
            # print("accuary:",accuary)
            # self.show_weights()

2.6 预测结果

训练完毕后的模型各参数已经确定,“预测”就是执行一次前向传播。

    def predict(self,data):
        return self.forward(data)

2.7 损失曲线与准确率曲线

损失值与准确率均在2.4反向传播中计算出来,使用matplotlib绘制图像即可。

    def caculate_accuracy_primal(self,actual_label,label):
        actual_label = actual_label.tolist()
        label = label.tolist()
        true_count = 0
        size = len(label)
        for i in range(size):
            al = float(actual_label[i][0])
            l = float(label[i][0])
            # print(f"al is {al} l is {l}")
            if al>=0.7 and l>=0.7:
                true_count+=1
            if al>=0.6 and al<0.7 and l>=0.6 and l<0.7:
                true_count+=1
            if al>=0.4 and al<0.6 and l>=0.4 and l<0.6:
                true_count+=1
            if al>=0.2 and al<0.4 and l>=0.2 and l<0.4:
                true_count+=1
            if al>=0.0 and al<0.2 and l>=0.0 and l<0.2:
                true_count+=1
            # print(f"正确个数为{true_count},总个数为{size}")
        return true_count / size

    def show_loss(self):
        # print(self.loss)
        pyplot.title("LOSS")
        pyplot.xlabel("epoch")
        pyplot.ylabel("ration")
        pyplot.plot(self.loss)
        pyplot.show()

    def show_accuracy(self):
        # print(self.loss)
        pyplot.title("Accuaracy")
        pyplot.xlabel("epoch")
        pyplot.ylabel("ration")
        pyplot.plot(self.accuracy)
        pyplot.show()

注意:上述代码准确率依据1.1中编程能力划分等级比较模型输出值(实际值)和真实值(标签)得出,具体问题具体分析!!!
在这里插入图片描述

三、程序测试

3.1 加载数据

数据集中前10条记录如图所示:
在这里插入图片描述

def load_data_primal():
    df = pandas.read_excel("data2.xlsx")
    data_temp  = df[["A","B","C","D","E"]]
    label_temp = df["最终得分"]
    data = []
    label = []
    for i in range(df.shape[0]):
        data.append(data_temp.iloc[i].to_list())
        temp = []
        temp.append(label_temp[i])
        label.append(temp)
    data = numpy.array(data)
    label = numpy.array(label)
    return data,label

我们可以更加直观的看看表格数据在python中的表现形式,下图为前10记录的输入,使用二维数组存储。
在这里插入图片描述下图为前10条记录的期望输出,同样使用二维数组存储。
在这里插入图片描述

3.2 划分数据集并启动模型

数据集的划分参照numpy手写BP神经网络,本例中样本较少,将前75%作为训练集用于训练,将后25%作为测试集用于验证。

def mytest():
    data, label = load_data_primal()
    # print(data[0:10],"\n",label[0:10])
    # 划分训练集与测试集
    data_train = data[0:int(len(data) * 3 / 4)]
    data_train_train = data_train[0:int(len(data_train) * 3 / 4)]
    data_train_test = data_train[int(len(data_train) * 1 / 4) * (-1):-1]
    data_test = data[int(len(data) * 1 / 4) * (-1):-1]

    label_train = label[0:int(len(label) * 3 / 4)]
    label_train_train = label_train[0:int(len(data_train) * 3 / 4)]
    label_train_test = label_train[int(len(data_train) * 1 / 4) * (-1):-1]
    label_test = label[int(len(label) * 1 / 4) * (-1):-1]

    # 创建一个包含两个隐含层的BP神经网络
    network = BPNet_one_output(5, 10, 1)
    # 训练模型
    network.train(data_train, label_train, 0.01, 10000)
    network.show_loss()
    network.show_accuracy()
    # 预测结果
    result = network.predict(data_test)
    print(result)
    print(label_test)
    acc = network.caculate_accuracy_primal(result,label_test)
    print("准确率是{:.2f}%".format(acc*100))

3.3 模型效果分析

3.3.1 损失曲线

随着训练的进行,损失函数逐渐减小。
在这里插入图片描述

3.3.2 准确率曲线

随着训练的进行,模型在训练集上的预测准确率逐渐提高,最终接近100%。
在这里插入图片描述

3.3.3 预测准确率

该模型在验证集上的预测准确率为90.91%,当然,因为初始权重是随机设置的,多次执行得到的结果不一定相同。
在这里插入图片描述

四、完整代码

import numpy
import pandas
from matplotlib import pyplot
'''
    构建一个包含两个隐含层的BP神经网络
'''
class BPNet_one_output:
    '''
        input,hidden,output分别表示输入层、隐含层、输出层神经元的个数
    '''
    def __init__(self,input,hidden,output):
        self.weight1 = numpy.random.randn(input,hidden)
        self.weight2 = numpy.random.randn(hidden,hidden)
        self.weight3 = numpy.random.randn(hidden,output)
        #准确度,训练后预测正确数目与样本总数之比
        self.accuracy = []
        #精确度,对训练结果而言,模型正确预测某一类别的样本数与模型预测为该类的样本数之比
        self.precision = []
        #召回率,对原始样本而言,样本中某个类别有多少被正确预测了
        self.recall = []
        #损失值
        self.loss = []

    #比较两个列表是否相同
    def compare(self,list1:list,list2:list):
        if len(list1)!= len(list2):
            return
        for i in range(len(list1)):
            if list1[i]!=list2[i]:
                return 0
        return 1

    def caculate_accuracy(self,actual_label,label):
        true_count = 0
        false_count = 0
        result = []
        for i in range(len(actual_label)):
            # 将numpy.ndarray转换为普通的List
            temp = self.one_hot_encoding(actual_label[i])
            result.append(temp)
        actual_label = result
        size = len(label)
        for i in range(size):
            rs = self.compare(actual_label[i],label[i])
            if rs==1:
                true_count += 1
            else:
                false_count += 1
        # print(f"正确个数为{true_count},总个数为{size}")
        return true_count/size

    def caculate_accuracy_primal(self,actual_label,label):
        actual_label = actual_label.tolist()
        label = label.tolist()
        true_count = 0
        size = len(label)
        for i in range(size):
            al = float(actual_label[i][0])
            l = float(label[i][0])
            # print(f"al is {al} l is {l}")
            if al>=0.7 and l>=0.7:
                true_count+=1
            if al>=0.6 and al<0.7 and l>=0.6 and l<0.7:
                true_count+=1
            if al>=0.4 and al<0.6 and l>=0.4 and l<0.6:
                true_count+=1
            if al>=0.2 and al<0.4 and l>=0.2 and l<0.4:
                true_count+=1
            if al>=0.0 and al<0.2 and l>=0.0 and l<0.2:
                true_count+=1
            # print(f"正确个数为{true_count},总个数为{size}")
        return true_count / size

    def one_hot_encoding(self,data:list):
        max = data[0]
        max_index = 0
        for i in range(len(data)):
            if data[i]>max:
                max = data[i]
                max_index = i
        for i in range(len(data)):
            if i==max_index:
                data[i]=1
            else:
                data[i]=0
        return data

    #sigmod激活函数
    def sigmod(self,x):
        return 1/(1 + numpy.exp(-x))

    #sigmod函数的导数
    def sigmod_derivative(self, x):
        return x * (1 - x)

    #softmax激活函数
    def softmax(self,x):
        #按行计算每一个样本
        exps = numpy.exp(x - numpy.max(x,axis=1,keepdims=True))
        #为避免指数溢出numpy能够表示的上限,使其减去当前数据中的最大值
        return exps/numpy.sum(exps,axis=1,keepdims=True)

    def loss_cross_entropy(self,y,p):
        '''
        :param y: 真实标签
        :param p: 预测标签
        :return: 交叉熵
        '''
        #为了避免出现log(0)的情况,计算时加上一个极小值
        min_data = 1e-60
        # return -1 * numpy.sum(y*numpy.log(p+min_data))
        return -numpy.mean(y*numpy.log(p+min_data))

    def loss_cross_entropy_derivative(self,label_true,label_predict):
        return label_true - label_predict

    #使用均方差作为损失函数
    def loss_mse(self,x,y):
        return 1/2*numpy.sum((x-y)*(x-y))

    #前向传播
    def forward(self, data):
        #存储每一层的输入和输出
        self.hidden1_input = numpy.dot(data, self.weight1)
        self.hidden1_output = self.sigmod(self.hidden1_input)

        self.hidden2_input = numpy.dot(self.hidden1_output,self.weight2)
        self.hidden2_output = self.sigmod(self.hidden2_input)

        self.output_input = numpy.dot(self.hidden2_output,self.weight3)
        self.output_output = self.sigmod(self.output_input)
        return self.output_output

    #后向传播
    def backward(self, data, label, learning_ration):
        #首先计算误差(损失),交叉熵的导函数
        output_error = self.output_output - label
        #输出层误差项(包含了误差、激活函数导数两部分信息)
        output_delta = output_error * self.sigmod_derivative(self.output_output)
        #将输出层的误差传入隐藏层2
        hidden2_error = numpy.dot(output_delta,self.weight3.T) * self.sigmod_derivative(self.hidden2_output)
        #将隐藏层2的误差传入隐藏层1
        hidden1_error = numpy.dot(hidden2_error,self.weight2.T) * self.sigmod_derivative(self.hidden1_output)

        #三层误差已经得出,可以开始更新权重了
        self.weight1 -= numpy.dot(data.T,hidden1_error) * learning_ration
        self.weight2 -= numpy.dot(self.hidden1_output.T, hidden2_error) * learning_ration
        self.weight3 -= numpy.dot(self.hidden2_output.T, output_error) * learning_ration

    #训练数据集
    def train(self,data,label,learning_ration,epoch):
        for i in range(epoch):
            output = self.forward(data)
            self.backward(data, label, learning_ration)

            loss = self.loss_mse(label, output)
            # loss = self.loss_cross_entropy(label, output)
            self.loss.append(loss)
            accuary = self.caculate_accuracy_primal(output, label)
            self.accuracy.append(accuary)
            # print("accuary:",accuary)
            # self.show_weights()

    #使用训练好的数据预测结果
    def predict_ont_hot(self,data:list):
        data = self.predict(data)
        result = []
        for i in range(len(data)):
            #将numpy.ndarray转换为普通的List
            temp = self.one_hot_encoding(data[i].tolist())
            result.append(temp)
        return result

    def predict(self,data):
        return self.forward(data)

    def show_weights(self):
        print(f"{self.weight1}\n{self.weight2}\n{self.weight3}")

    def show_loss(self):
        # print(self.loss)
        pyplot.title("LOSS")
        pyplot.xlabel("epoch")
        pyplot.ylabel("ration")
        pyplot.plot(self.loss)
        pyplot.show()

    def show_accuracy(self):
        # print(self.loss)
        pyplot.title("Accuaracy")
        pyplot.xlabel("epoch")
        pyplot.ylabel("ration")
        pyplot.plot(self.accuracy)
        pyplot.show()

def load_data():
    df = pandas.read_excel("data2.xlsx")
    data_temp  = df[["A","B","C","D","E"]]
    label_temp = df["评级分"]
    data = []
    label = []
    DIMENSION = len(data_temp.columns)
    for i in range(df.shape[0]):
        data.append(data_temp.iloc[i].to_list())
        #对训练集标签进行独热编码
        temp = []
        for j in range(DIMENSION):
            temp.append(0)
        index = label_temp[i]-1
        temp[index] = 1
        # temp.append(label_temp[i])
        label.append(temp)
    data = numpy.array(data)
    label = numpy.array(label)
    return data,label

def load_data_primal():
    df = pandas.read_excel("data2.xlsx")
    data_temp  = df[["A","B","C","D","E"]]
    label_temp = df["最终得分"]
    data = []
    label = []
    for i in range(df.shape[0]):
        data.append(data_temp.iloc[i].to_list())
        temp = []
        temp.append(label_temp[i])
        label.append(temp)
    data = numpy.array(data)
    label = numpy.array(label)
    return data,label

def test():
    # 创建训练数据集
    X_train = numpy.array([[0, 0],
                           [0, 1],
                           [1, 0],
                           [1, 1]])
    y_train = numpy.array([[0],
                           [1],
                           [1],
                           [0]])

    # 创建测试数据集
    X_test = numpy.array([[0, 0],
                          [0, 1],
                          [1, 0],
                          [1, 1]])
    y_test = numpy.array([[0],
                          [1],
                          [1],
                          [0]])
    learning_ration = 0.01
    network = BPNet_one_output(2, 10, 1)
    network.train(X_train, y_train, learning_ration, 50000)
    print(network.predict(X_test))
    network.show_loss()

def mytest():
    data, label = load_data_primal()
    # print(data[0:10],"\n",label[0:10])
    # 划分训练集与测试集
    data_train = data[0:int(len(data) * 3 / 4)]
    data_train_train = data_train[0:int(len(data_train) * 3 / 4)]
    data_train_test = data_train[int(len(data_train) * 1 / 4) * (-1):-1]
    data_test = data[int(len(data) * 1 / 4) * (-1):-1]

    label_train = label[0:int(len(label) * 3 / 4)]
    label_train_train = label_train[0:int(len(data_train) * 3 / 4)]
    label_train_test = label_train[int(len(data_train) * 1 / 4) * (-1):-1]
    label_test = label[int(len(label) * 1 / 4) * (-1):-1]

    # 创建一个包含两个隐含层的BP神经网络
    network = BPNet_one_output(5, 10, 1)
    # 训练模型
    network.train(data_train, label_train, 0.01, 10000)
    network.show_loss()
    network.show_accuracy()
    # 预测结果
    result = network.predict(data_test)
    print(result)
    print(label_test)
    acc = network.caculate_accuracy_primal(result,label_test)
    print("准确率是{:.2f}%".format(acc*100))

if __name__ == '__main__':
    mytest()

五、其他问题

在训练过程中可能出现以下两种情况,损失曲线并没像我们期望的那样随着训练的进行而减少。出现以下问题的原因有两个:

①损失函数选用不合适。(选用了交叉熵函数)
②模型训练顺序不正确。(在train方法中)

5.1 损失曲线呈现为一条水平直线

在这里插入图片描述

5.2 损失曲线不降反增

在这里插入图片描述

5.3 更正方法

①调整train方法中代码顺序;
②将train方法中的损失函数改为“方差”。

    #训练数据集
    def train(self,data,label,learning_ration,epoch):
        for i in range(epoch):
            output = self.forward(data)
            self.backward(data, label, learning_ration)

            loss = self.loss_mse(label, output)
            # loss = self.loss_cross_entropy(label, output)
            self.loss.append(loss)
            accuary = self.caculate_accuracy_primal(output, label)
            self.accuracy.append(accuary)
            # print("accuary:",accuary)
            # self.show_weights()
  • 34
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
### 回答1: BP神经网络是一种比较经典的人工神经网络,被广泛应用于分类、预测等领域。在Python中,可以使用多种工具包来编写BP神经网络分类代码,如TensorFlow、Keras、PyTorch等。 针对四组数据预测一组的问题,需要先准备好训练集和测试集的数据。在准备数据时需要注意,数据集要尽量多样性、覆盖面广,同时需要进行特征工程和数据预处理等步骤,避免数据的不完整性和噪声影响模型的训练效果。 接下来,我们可以使用Python的Keras框架来构建BP神经网络模型。具体的步骤可以分为以下几部分: 1. 构建模型 我们可以先定义模型的输入层、隐藏层和输出层。在定义隐藏层时需要指定神经元数目和激活函数等参数。在本例中,由于我们需要进行分类任务,因此输出层的激活函数一般采用sigmoid或softmax函数。 2. 编译模型 在定义完模型结构后,需要对模型进行编译。在编译时需要指定损失函数、优化器和评估指标等参数。常用的损失函数有交叉熵和均方差等,优化器常用的有SGD、Adam等。 3. 训练模型 在编译完模型后,可以开始训练模型。在训练时需要指定训练集和测试集、批次大小和迭代次数等参数。训练时,模型会基于误差反向传播算法对模型参数进行调整。 4. 测试模型 在训练完模型后,可以用测试集数据对模型进行评估。评估指标包括精度、F1值等。 最后,我们可以对新的数据进行分类预测。这里需要注意,预测时需要对新数据进行预处理,以便与训练数据相匹配。 ### 回答2: BP神经网络也称为反向传播神经网络,是一种常见的分类算法,主要用于解决非线性分类问题。在BP神经网络分类中,输入的特征向量经过处理后,通过神经元之间的权重相互传递,最终得到输出结果。 Python语言提供了BP神经网络分类的相关库,例如Scikit-learn、TensorFlow等。在使用Python进行BP神经网络分类时,需要准备数据集和设置网络参数,并对模型进行训练和评估。下面以四组数据预测一组为例,讲解BP神经网络分类Python代码实现方法。 1. 准备数据集 在BP神经网络分类中,首先需要准备好训练数据集和测试数据集。训练数据集用于训练模型,测试数据集用于评估模型的性能。本例中,我们使用四组数据预测一组,因此数据集应该包括五组数据,其中一组为测试数据,另外四组为训练数据。数据集应该以二维数组的形式表示,如下所示: ```python import numpy as np # 定义训练数据和测试数据的数组 X_train = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) y_train = np.array([0, 1, 1, 0]) X_test = np.array([[0, 0]]) # 打印数组形状 print(X_train.shape) # 输出 (4, 2) print(y_train.shape) # 输出 (4,) print(X_test.shape) # 输出 (1, 2) ``` 其中X_train和X_test表示特征向量,y_train表示对应的类别标签。 2. 设置网络参数 在BP神经网络分类中,需要设置一些网络参数,例如隐藏层的神经元数量、学习率、迭代次数等。在本例中,我们设置隐藏层中的神经元数量为4个,学习率为0.1,迭代次数为1000次,代码如下: ```python from sklearn.neural_network import MLPClassifier # 定义BP神经网络分类器 classifier = MLPClassifier(hidden_layer_sizes=(4,), max_iter=1000, alpha=0.1, solver='lbfgs', verbose=10, random_state=1, activation='tanh') ``` 其中hidden_layer_sizes表示隐藏层的神经元数量,max_iter表示最大迭代次数,alpha表示正则化的参数,solver表示优化算法,verbose表示是否输出详细信息,random_state表示随机数种子,activation表示激活函数。 3. 训练模型 在设置好神经网络的参数之后,就可以对模型进行训练了。在本例中,我们使用fit()方法进行训练,代码如下: ```python # 对模型进行训练 classifier.fit(X_train, y_train) ``` 4. 预测结果 训练模型之后,就可以对测试数据进行预测了。在本例中,我们使用predict()方法进行预测,然后输出预测结果,代码如下: ```python # 对测试数据进行预测 y_predict = classifier.predict(X_test) # 输出预测结果 print(y_predict) # 输出 [0] ``` 其中y_predict表示对测试数据的预测结果。 综上所述,BP神经网络分类Python代码实现过程包括准备数据集、设置网络参数、训练模型和预测结果。通过运用Python语言进行BP神经网络分类的实现,可以帮助我们更好地理解BP神经网络算法的原理和流程,也可以用于对更复杂的数据进行分析和处理,提高数据分析和处理的效率和准确性。 ### 回答3: bp神经网络是一种基于反向传播算法训练的神经网络模型,可以用于分类和回归问题。在Python中,我们可以使用第三方库如scikit-learn或tensorflow来实现bp神经网络。 对于使用bp神经网络进行分类问题,我们需要先建立模型并训练模型。在训练过程中,我们需要指定参数如学习率、迭代次数等。另外,我们还需将数据分为训练集和测试集,以避免模型过拟合。 假设我们有四组数据,每组数据包含若干个输入特征和对应的类别标签,我们可以将数据用于训练模型,并使用训练好的模型进行预测。 以下是一个简单的使用scikit-learn实现bp神经网络分类Python代码: ``` # 导入库 from sklearn.neural_network import MLPClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 加载数据 data1 = # 第一组数据 data2 = # 第二组数据 data3 = # 第三组数据 data4 = # 第四组数据 X = np.concatenate((data1[:, :n], data2[:, :n], data3[:, :n], data4[:, :n]), axis=0) # 输入特征 y = np.concatenate((data1[:, -1], data2[:, -1], data3[:, -1], data4[:, -1]), axis=0) # 类别标签 # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # 建立模型 clf = MLPClassifier(hidden_layer_sizes=(100, 100), max_iter=500, alpha=0.001, solver='adam', random_state=42, tol=0.0001) # 模型训练 clf.fit(X_train, y_train) # 模型预测 pred = clf.predict(X_test) # 测试集准确率 accuracy = accuracy_score(y_test, pred) print('Accuracy: {:.2f}%'.format(accuracy*100)) # 预测一组新数据 new_data = # 新数据 new_pred = clf.predict(new_data[:, :n]) print('New data prediction: {}'.format(new_pred)) ``` 在上述代码中,我们使用了四组数据训练了bp神经网络模型,并使用其中一组数据进行预测。其中,hidden_layer_sizes指定了隐藏层的神经元数量,并可根据具体问题调整。其他参数如max_iter、alpha、solver和random_state等也需根据具体问题和数据情况进行选择。最后,我们还可以对新数据进行预测。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

进击的墨菲特

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值