本文使用了ROS Kinetic版本集成的的opencv库,实现了多通道3原色R,G,B分量单通道图的提取。
1 实现代码如下:
#include <opencv2/highgui.hpp>
using namespace cv;
int main(int argc,char **argv)
- {
| IplImage *img=cvLoadImage("/home/user/Pictures/opencvlogo.bmp",1);
/*cvCreateImage分配图像头和数据空间*/
| IplImage *channel_r=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1);
| IplImage *channel_g=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1);
| IplImage *channel_b=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1);
| IplImage *img_r=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,3);
| IplImage *img_g=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,3);
| IplImage *img_b=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,3);
|
/*提取多通道原图,并填充到单通道图*/
| cvSplit(img,channel_b,channel_g,channel_r,NULL);
|
/*合并单通道成多通道*/
| cvMerge(channel_b,0,0,0,img_b);
| cvMerge(0,channel_g,0,0,img_g);
| cvMerge(0,0,channel_r,0,img_r);
| cvNamedWindow("ImageOrigin",CV_WINDOW_AUTOSIZE);
| cvNamedWindow("Image_R",CV_WINDOW_AUTOSIZE);
| cvNamedWindow("Image_G",CV_WINDOW_AUTOSIZE);
| cvNamedWindow("Image_B",CV_WINDOW_AUTOSIZE);
| cvShowImage("ImageOrigin",img);
| cvShowImage("Image_R",img_r);
| cvShowImage("Image_G",img_g);
| cvShowImage("Image_B",img_b);
| cvWaitKey(0);
| cvSaveImage("./img_red.bmp",img_r);
| cvSaveImage("./img_green.bmp",img_g);
| cvSaveImage("./img_blue.bmp",img_b);
|
| cvWaitKey(0);
| cvReleaseImage(&img);
| cvReleaseImage(&img_r);
| cvReleaseImage(&img_g);
| cvReleaseImage(&img_b);
| cvReleaseImage(&channel_r);
| cvReleaseImage(&channel_g);
| cvReleaseImage(&channel_b);
| cvDestroyAllWindows();
|
| return 0;
| }
2 实验结果:
1)原图如下:
2)处理后提取的各个单通道图如下:
3 函数说明
1)IplImage* cvLoadImage( const char* filename, int flags );
cvLoadImage( filename, -1 ); 默认读取图像的原通道数
cvLoadImage( filename, 0 ); 强制转化读取图像为灰度图
cvLoadImage( filename, 1 ); 读取彩色图
2)IplImage* cvCreateImage( CvSize size, int depth, int channels )
size 图像宽、高.
depth 图像元素的位深度,可以是下面的其中之一:
IPL_DEPTH_8U - 无符号8位
整型
IPL_DEPTH_8S - 有符号8位整型
IPL_DEPTH_16U - 无符号16位整型
IPL_DEPTH_16S - 有符号16位整型
IPL_DEPTH_32S - 有符号32位整型
IPL_DEPTH_32F -
单精度浮点数
IPL_DEPTH_64F -
双精度浮点数
channels 每个元素(像素)通道数.可以是 1, 2, 3 或 4.通道是交叉存取的,例如通常的彩色图像数据排列是:b0 g0 r0 b1 g1 r1 ... 虽然通常 IPL 图象格式可以存贮非交叉存取的图像,并且一些OpenCV 也能处理他, 但是这个函数只能创建交叉存取图像.
3)void cvSplit( const CvArr* src, CvArr* dst0, CvArr* dst1, CvArr* dst2, CvArr* dst3 )
函数将复制src的各个通道到图像dst0,dst1,dst2和dst3中。如果源图像少于4个通道的情况下,那么传递给cvSplit()的不必要的目标参数可设置为NULL。
使用时注意,源图像const CvArr* src应为多通道图像;目标图像CvArr* dst0, CvArr* dst1, CvArr* dst2,和CvArr* dst3应为单通道图像,以上图像的size应该一样大。
4)void cvMerge(const CvArr* src0, const CvArr* src1, const CvArr* src2, const CvArr* src3, CvArr* dst)
合并单通道图成多通道图显示。
4 参考文献
http://blog.csdn.net/leixiaohua1020/article/details/19020903