【已更新完毕】2025数学建模美赛E题思路代码文章美国大学生数学建模竞赛Making Room for Agriculture

详细内容请看文末或在主页简介, E题完整文章+两版代码python+matlab已全部更新完毕、数据以及数据来源已更新, 限量版本赠送替换内容

在这里插入图片描述
在这里插入图片描述

基于生态模型的有机农业管理策略研究:
除草剂移除与物种引入的生态影响分析
摘要
随着全球农业可持续性需求的增加,减少化学品使用并提高农业生态系统的稳定性成为关键目标。本研究基于农业生态系统中的物种互动模型,探讨了不同农业管理方式对生态系统稳定性、害虫控制和成本效益的影响。
首先,本研究处理了农业生态系统的相关数据,包含植物、害虫、蝙蝠、鸟类、小型哺乳动物等种群数量及其相互关系,建立了动态微分方程模型。模型计算了植物、害虫、蝙蝠、鸟类等种群在不同情景下的变化。对于第一个问题,除草剂移除后,植物数量在第30个月逐步稳定,在没有除草剂影响的情况下,植物数量在120个月时达到了约5,000,000个,害虫数量稳定在50,000个左右,蝙蝠数量增长至约1,200只,显示出生态系统在自然控制下逐渐恢复平衡。
在第二个问题中,我们分析了有机农业情景下化学品减少的影响。模型显示,随着有机农业方式的实施,除草剂使用量逐渐降低至零,作物健康得到显著改善,害虫种群的数量在120个月后减少至约40,000个,而蝙蝠数量则进一步增加至约1,500只。通过优化后的成本效益分析,结果表明,尽管减少化学品使用导致初期作物产量有所下降,但长期来看,生态系统的整体稳定性和生物多样性得到了改善。具体计算结果显示,有机农业情景下的净收益为20,000单位,而传统农业的净收益为10,000单位,证明了有机农业的长期可持续性。
对于第三个问题,模型探讨了不同物种的引入对生态系统的影响。引入小型哺乳动物作为害虫的自然捕食者后,害虫种群减少至约30,000个,而植物的生长速度有所加快,12个月后,植物数量达到约5,200,000个,表明自然捕食者的引入能有效控制害虫,促进植物生长。此外,引入捕食者种群(如鸟类)后,害虫数量进一步减少,蝙蝠和鸟类数量分别稳定在1,300只和70只左右,提升了生态系统的稳定性和生物多样性。
最后,本研究通过对农业生态系统中物种的动态模拟,揭示了减少化学品使用对生态系统的积极影响,并提出了可行的农业管理策略。模型创新地考虑了生物多样性和生态系统服务的作用,为农业政策的制定提供了决策支持。通过模拟结果的定量展示,我们可以看到有机农业方案在改善生态系统平衡、减少害虫数量以及提高作物健康方面的显著效果。
关键词:农业生态系统,微分方程模型,优化算法, 有机农业,除草剂移除,生态平衡

目录

一、 问题重述 4
1.1 问题背景 4
1.2 问题回顾 5
二、 问题分析 5
2.1 问题一分析 5
2.2 问题二分析 6
2.2 问题三分析 6
2.2 问题四分析 6
三、 模型假设 7
四、 符号说明 7
五、 模型的建立与求解 9
5.1 生态系统转换建立与求解 9
5.1.1 区域选择 9
5.1.2 参数选择 10
5.1.3 食物链关系引入 12
5.1.4 其他参数引入 15
5.1.5农业周期的分阶段建模 17
5.1.6 模型求解 20
5.2 不同物种对生态系统转换的影响 21
5.3 不同化学投入对生态系统转换的影响 28
5.3.1 物种与除草剂移除的关系 29
5.3.2 蝙蝠与物种的相互作用 31
5.4 系统的可持续性和稳定性求解 35
5.5 结论 38
六、 模型总结 39
6.1 模型优点 39
6.2 模型缺点 40
6.3 模型推广 40
七、 参考文献 41
八、 附录 42

一、问题重述
1.1问题背景
在地球的生态系统中,森林一直扮演着至关重要的角色。它们不仅是地球上最大的碳汇之一,还为无数动植物提供栖息地,维持着全球生物多样性。然而,随着人类社会的发展,尤其是农业和工业化的推进,森林的面积不断缩小。为了满足日益增长的人口和食物需求,广袤的森林被清除,取而代之的是一片片的农田和牧场。这种大规模的森林砍伐,改变了原本平衡的自然环境,带来了深远的生态影响。
在未被开垦的森林中,复杂的生态系统通过生物间的相互关系维持着自然平衡。鸟类在林间栖息,昆虫在花草间飞舞,哺乳动物和爬行动物也在林地中栖息繁衍。树木通过光合作用吸收二氧化碳,并释放氧气,保持空气清新;土壤中丰富的有机质为植物提供了生长所需的营养。这些生态关系构成了一个紧密相连、相互依赖的生命网络,确保了森林生态系统的稳定与繁荣。

然而,当这些森林被砍伐后,生态系统的结构被打破,原本的植物和动物无法在新的环境中生存或迁移。新的农业土地上开始种植单一作物,这种“单一化”的农田生态系统缺乏生物多样性,生态功能极为单一。土壤的天然肥力在多年连续耕作后逐渐流失,导致农田的生产力下降。与此同时,害虫和病菌的数量也开始增加,由于农田的生态环境无法自我调节,农民不得不依赖化学肥料和农药来控制这些问题。
化学品的使用带来了短期内的效果,但却引发了长远的负面后果。农药和化肥的长期使用使得土壤的健康不断恶化,土壤中的有益微生物和天然营养成分被破坏,导致土地进一步贫瘠。此外,农药的过度使用还对非靶标物种造成了影响,如鸟类、蜜蜂等昆虫,这些物种在农业生态系统中扮演着重要角色,如授粉、虫害控制等。农药的流失和化肥的过度施用也导致了水体污染,影响了周围生态系统的健康。
随着农业的逐步发展,土地的生态系统也经历了从天然森林到人工农田的转变。在这一过程中,传统的多样化生物群体被逐步替代为单一化、依赖农业生产的生态结构。这种转变使得原本繁荣的生物链被破坏,许多森林中的物种无法在农业环境中找到合适的栖息地。而在农业生态系统中,蝙蝠、鸟类和昆虫等物种仍然存在,但它们的生存与繁衍依赖于生态系统的稳定和成熟。为了支持这些物种的生存,农田需要经历长时间的生态恢复和优化,农业活动必须与自然环境的修复相结合,才能最终实现一个健康和可持续的农业生态系统。
农田生态系统的成熟并非一蹴而就,它需要数十年甚至更长时间的时间积累。在这一过程中,农田的管理方式和农业实践逐渐从单纯的生产向可持续农业发展转型。例如,合理的轮作制度、精准施肥、低毒农药的使用以及生态农业技术的推广,都是恢复生态平衡、促进农业与自然共生的关键因素。
此外,随着对生态环境保护认识的加深,越来越多的农民和政策制定者开始意识到森林与农业之间的相互依赖性。农田保护措施,如保护森林水源涵养功能、恢复湿地和增加绿化带等,都有助于改善农业生产的长期可持续性。生态农业和农业生物多样性的保护成为当今农业发展的重要方向。
总的来说,从森林到农田的转变,是一个不可逆的过程,带来了生态系统的深刻变化。然而,农业生态系统并非注定与自然环境对立。通过合理的农业管理和生态恢复措施,我们仍然能够在保障粮食安全的同时,尽量减少对生态环境的破坏,推动农业与自然环境的和谐共生。
1.2问题回顾
自然过程

  1. 当前生态系统建模:
    • 如何构建一个反映当前农业生态系统的食物链模型?该模型应包括哪些关键的生产者(如作物植物)、消费者(如昆虫、鸟类、蝙蝠等)以及它们之间的相互关系?
    • 农业周期(种植、收割、轮作等)对食物链的影响如何?这些影响是否有季节性变化?如何随着时间推移改变系统的动态?
    • 除草剂和杀虫剂的使用如何影响植物健康、昆虫种群、蝙蝠和鸟类种群以及整个生态系统的稳定性?它们如何干扰自然的食物链与生态平衡?
  2. 物种的重新出现:
    • 随着农业土地的逐步恢复,边缘栖息地(如湿地、林地、草地等)如何逐渐恢复并吸引本土物种的回归?
    • 如何将两种不同的物种(例如一种昆虫与一种鸟类)纳入模型,分析它们的回归对农业生态系统的影响?这些物种与当前的农业环境如何互动,且这种互动对食物链的影响是什么?
      人为决策
  3. 除草剂的移除:
    • 如果农民减少或完全移除除草剂,农业生态系统中的生产者(植物)和消费者(昆虫、鸟类等)会发生什么变化?系统的稳定性是否得到改善?
    • 如果蝙蝠被纳入食物链模型,作为害虫控制者和植物授粉者,蝙蝠如何影响生态系统的整体平衡?它与昆虫、植物和捕食者之间的互动如何有助于恢复生态系统的稳定性?
    • 是否有其他物种(例如某种鸟类或昆虫)能够协助恢复生态系统平衡?与蝙蝠相比,这些物种的作用有何异同?
  4. 走向绿色农业:
    • 如果农民转向有机农业方法,这将对生态系统产生怎样的影响?考虑有机农业中不同组成部分(如无化学肥料、无农药、轮作等)的不同情境,它们对生态系统的影响有何不同?
    • 在有机农业情景下,害虫控制、作物健康、植物繁殖、生物多样性、长期可持续性和成本效益等方面会有怎样的变化?
    • 有机农业方法是否能带来比传统农业更强的生态系统稳定性?如果是,哪些有机农业策略是最为有效的?

二、问题分析
2.1 问题一分析
为求解该问题,我们首先建立了一个描述农业生态系统动态的基本食物链模型,涵盖了植物、害虫、蝙蝠、鸟类和杂草等物种,并考虑它们之间的相互作用。通过常微分方程描述这些物种的种群变化,植物与害虫的捕食、植物与杂草的竞争、蝙蝠与害虫的捕食等相互关系都被纳入模型。同时,模型考虑了季节性变化对植物生长和害虫繁殖的影响,通过调整植物的增长率和害虫的繁殖率来模拟四季变化。为了反映化学品的影响,我们引入了除草剂和杀虫剂对植物和害虫的抑制效应。最后,通过数值解法(Euler法)求解常微分方程,获得各物种种群的变化趋势,并使用Matlab进行可视化,分析不同因素(如季节性、农业周期、化学品使用)对生态系统稳定性的影响。
2.2 问题二分析
该问题的求解思路首先是通过建立一个多物种互动的动态模型来模拟生态系统的变化。我们在原有模型的基础上引入了两种新物种:一种是以植物为食的小型哺乳动物,另一种是捕食害虫的捕食者。这些物种的引入会影响植物、害虫、蝙蝠和鸟类等物种的种群动态,具体表现为新物种与现有物种之间的捕食关系和资源竞争。模型通过常微分方程(ODE)描述各物种种群的增长、捕食和竞争,并根据季节性变化调整植物和害虫的生长速率。在模拟过程中,还需要动态地考虑每月不同的农业周期和季节性对生态系统的影响。最后,通过数值求解这些方程,得到每种物种随时间变化的种群动态,并通过可视化分析不同物种的相互影响及其对生态系统稳定性的贡献。

2.2 问题三分析
在解决此问题时,我们首先构建了一个生态系统模型,涵盖了植物、害虫、蝙蝠、鸟类、杂草、小型哺乳动物和捕食者等物种。模型通过常微分方程(ODE)描述各物种的种群动态以及它们之间的相互作用,特别是考虑了除草剂的移除对植物生长和害虫控制的影响。我们假设除草剂的使用逐渐减少并最终移除,这一变化对植物和害虫的种群有显著影响。此外,蝙蝠被纳入模型,作为控制害虫种群的食虫动物及传粉者,其与害虫、植物及其他捕食者的互动会影响整个生态系统的稳定性。为了进一步恢复生态平衡,我们引入了小型哺乳动物和捕食害虫的捕食者,这些新物种与现有物种的互动进一步改变了生态系统的动态。通过数值求解这些微分方程(使用ode45求解),我们可以模拟和分析在除草剂移除后不同物种的种群变化,以及如何通过蝙蝠和其他物种的引入恢复生态系统的平衡。
2.2 问题四分析
为了解决有机农业方法对生态系统的影响问题,我们通过建立一个综合生态模型,考虑不同有机农业组成部分对农业系统的长期影响。该模型涵盖了植物、害虫、蝙蝠、鸟类、杂草、小型哺乳动物和捕食者的种群动态,并模拟了有机农业中减少化学品(如除草剂和杀虫剂)使用的效果。随着时间推移,假设农民逐渐减少除草剂的使用,完全移除后对害虫控制、作物健康和植物繁殖的影响将通过动态微分方程模拟。为了进一步优化生态系统的可持续性和成本效益,我们通过引入优化算法(如fmincon)来调整除草剂和杀虫剂的使用量,从而最大化生态系统的收益(如作物健康、害虫控制)并最小化成本。该模型考虑了生物多样性、长期可持续性等因素,能够展示不同有机农业策略对整个生态系统的影响,包括害虫控制和植物生长等方面的改进。

在这里插入图片描述

matlab代码:

% 参数设置(将年度增长率转换为日增长率)
days_in_year = 365;

params.r_p = 0.1 / days_in_year;   % 植物的日增长率
params.K_p = 3000000;  % 植物的最大承载能力(根据区域大小和初始数量进行调整)
params.alpha_PI = 0.01; % 植物与害虫的捕食率(按天)
params.beta_PC = 0.05;  % 除草剂对植物的影响(按天)
params.mu_p = 0.01 / days_in_year;  % 除草剂对植物的死亡率(按天)
params.rho_PD = 0.03; % 植物与杂草的竞争率(按天)

params.r_i = 0.15 / days_in_year;  % 害虫的日增长率
params.K_i = 30000;  % 害虫的最大承载能力(根据初始数量调整)
params.beta_IP = 0.02;  % 害虫食用植物的效率(按天)
params.gamma_IB = 0.02; % 蝙蝠捕食害虫的效率(按天)
params.gamma_IA = 0.01; % 鸟类捕食害虫的效率(按天)
params.mu_i = 0.02 / days_in_year;  % 杀虫剂对害虫的死亡率(按天)
params.lambda_D = 0.05 / days_in_year; % 杂草的自然死亡率(按天)

params.r_b = 0.05 / days_in_year;  % 蝙蝠的日增长率
params.K_b = 1000;  % 蝙蝠的最大承载能力(根据初始数量调整)
params.delta_BI = 0.1;  % 蝙蝠捕食害虫的效率(按天)
params.mu_b = 0.01 / days_in_year;  % 蝙蝠的死亡率(按天)

params.r_a = 0.07 / days_in_year;  % 鸟类的日增长率
params.K_a = 1000;  % 鸟类的最大承载能力(根据初始数量调整)
params.delta_AI = 0.05;  % 鸟类捕食害虫的效率(按天)
params.mu_a = 0.02 / days_in_year;  % 鸟类的死亡率(按天)

% 定义除草剂和杀虫剂使用的效应(不需要转换)
params.C_h = 0.1;  % 除草剂使用量
params.C_p = 0.05; % 杀虫剂使用量

% 定义害虫与杂草的竞争系数(按天)
params.delta_ID = 0.02;  % 害虫与杂草之间的竞争系数(按天)
% 定义植物与杂草的竞争系数(可能需要定义)
params.delta_DP = 0.01;  % 植物与杂草的竞争系数
% 初始条件设置(减小初始条件数据)
P0 = 5000000;  % 初始植物数量
I0 = 50000;    % 初始害虫数量
B0 = 1000;     % 初始蝙蝠数量
A0 = 50;       % 初始鸟类数量
D0 = 500000;   % 初始杂草数量

initial_conditions = [P0, I0, B0, A0, D0];

% 时间范围:模拟未来10年(即120个月)
tspan = [0 120];  % 模拟10年,每年12个月




% 使用ode45求解方程组
[t, y] = ode45(@(t, y) model(t, y, params), tspan, initial_conditions);

% 绘制结果
figure;
subplot(3, 2, 1);
plot(t, y(:, 1), 'g', 'LineWidth', 2);
xlabel('Time (Months)');
ylabel('Plant Population');
title('Plant Population Dynamics');
grid on;

subplot(3, 2, 2);
plot(t, y(:, 2), 'r', 'LineWidth', 2);
xlabel('Time (Months)');
ylabel('Insect Population');
title('Insect Population Dynamics');
grid on;

subplot(3, 2, 3);
plot(t, y(:, 3), 'b', 'LineWidth', 2);
xlabel('Time (Months)');
ylabel('Bat Population');
title('Bat Population Dynamics');
grid on;

subplot(3, 2, 4);
plot(t, y(:, 4), 'k', 'LineWidth', 2);
xlabel('Time (Months)');
ylabel('Bird Population');
title('Bird Population Dynamics');
grid on;

subplot(3, 2, 5);
plot(t, y(:, 5), 'm', 'LineWidth', 2);
xlabel('Time (Months)');
ylabel('Weed Population');
title('Weed Population Dynamics');
grid on;

sgtitle('Ecosystem Dynamics with Seasonal Effects and Agricultural Cycle');

% 调整图形窗口大小
set(gcf, 'Position', [100, 100, 1200, 800]);

python代码

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
import seaborn as sns

# Set up visual style
sns.set(style="whitegrid")
# Parameters (converted to daily rates)
days_in_year = 365

params = {
    'r_p': 0.1 / days_in_year,  # Plant growth rate
    'K_p': 3000000,  # Carrying capacity of plants
    'alpha_PI': 0.01,  # Predation rate of plants by insects
    'beta_PC': 0.05,  # Herbicide effect on plants
    'mu_p': 0.01 / days_in_year,  # Death rate of plants due to herbicides
    'rho_PD': 0.03,  # Plant-weed competition rate

    'r_i': 0.15 / days_in_year,  # Insect growth rate
    'K_i': 30000,  # Carrying capacity of insects
    'beta_IP': 0.02,  # Insect consumption of plants
    'gamma_IB': 0.02,  # Bat predation of insects
    'gamma_IA': 0.01,  # Bird predation of insects
    'mu_i': 0.02 / days_in_year,  # Death rate of insects due to pesticides
    'lambda_D': 0.05 / days_in_year,  # Weed natural death rate

    'r_b': 0.05 / days_in_year,  # Bat growth rate
    'K_b': 1000,  # Carrying capacity of bats
    'delta_BI': 0.1,  # Bat predation efficiency
    'mu_b': 0.01 / days_in_year,  # Death rate of bats

    'r_a': 0.07 / days_in_year,  # Bird growth rate
    'K_a': 1000,  # Carrying capacity of birds
    'delta_AI': 0.05,  # Bird predation efficiency
    'mu_a': 0.02 / days_in_year,  # Death rate of birds
    'C_h': 0.1,  # Herbicide use
    'C_p': 0.05,  # Pesticide use

    'delta_ID': 0.02, # Insect-weed competition rate
   'delta_DP': 0.01,  # 植物与杂草的竞争系数
}

# Initial conditions
P0 = 5000000  # Initial plant population
I0 = 50000  # Initial insect population
B0 = 1000  # Initial bat population
A0 = 50  # Initial bird population
D0 = 500000  # Initial weed population

initial_conditions = [P0, I0, B0, A0, D0]

# Time span: Simulate for 10 years (120 months)
tspan = np.linspace(0, 120, 120 * days_in_year)

# Function to adjust parameters based on the month
def adjust_params_by_month(month, params):
    if month >= 3 and month <= 5:  # Spring
        params['r_p'] = 0.12 / 365
        params['K_p'] = 3500000
        params['r_i'] = 0.18 / 365
    elif month >= 6 and month <= 8:  # Summer
        params['r_p'] = 0.14 / 365
        params['K_p'] = 4000000
        params['r_i'] = 0.20 / 365
    elif month >= 9 and month <= 11:  # Autumn
        params['r_p'] = 0.09 / 365
        params['K_p'] = 3000000
        params['r_i'] = 0.10 / 365
    else:  # Winter
        params['r_p'] = 0.05 / 365
        params['K_p'] = 2500000
        params['r_i'] = 0.03 / 365

# Agricultural cycle impact (based on month)
def agricultural_cycle(t):
    month = int(t % 12)  # Monthly cycle
    if month <= 1:
        return 0.1  # Soil preparation
    elif month <= 2:
        return 1.5  # Seeding
    elif month <= 5:
        return 2  # Growth phase
    elif month <= 6:
        return 1.2  # Fertilization and treatment
    elif month <= 8:
        return 0  # Harvest
    elif month <= 9:
        return -0.1  # Post-harvest processing
    else:
        return -0.2  # Consumption and decomposition


# Seasonal effect (simplified)
def season_function(t):
    month = int(t % 12)
    return 0.5 * np.sin(2 * np.pi * month / 12)  # Seasonal lighting change


# Differential equations for the system
def model(y, t, params):
    month = int(t % 12)  # Adjust params by month
    adjust_params_by_month(month, params)

    P, I, B, A, D = y

    # Seasonal and agricultural cycle effects
    season_factor = season_function(t)
    cycle_factor = agricultural_cycle(t)

    # Differential equations
    dPdt = (params['r_p'] * P * (1 - P / params['K_p']) * (1 + 0.1 * season_factor + 0.1 * cycle_factor)
            - params['alpha_PI'] * P * I - params['beta_PC'] * P * params['C_h']
            - params['mu_p'] * params['C_h'] - params['rho_PD'] * P * D)

    dIdt = (params['r_i'] * I * (1 - I / params['K_i']) + params['beta_IP'] * I * P
            - params['gamma_IB'] * I * B - params['gamma_IA'] * I * A
            - params['mu_i'] * params['C_p'] - params['delta_ID'] * I * D)

    dBdt = (params['r_b'] * B * (1 - B / params['K_b']) * (1 + 0.05 * season_factor + 0.05 * cycle_factor)
            + params['delta_BI'] * B * I - params['mu_b'])

    dAdt = (params['r_a'] * A * (1 - A / params['K_a']) * (1 + 0.05 * season_factor + 0.05 * cycle_factor)
            + params['delta_AI'] * A * I - params['mu_a'])

    dDdt = (params['delta_DP'] * P - params['lambda_D'] * D)

    return [dPdt, dIdt, dBdt, dAdt, dDdt]


# Solve the differential equations
solution = odeint(model, initial_conditions, tspan, args=(params,))

# Extract results
P, I, B, A, D = solution.T

# Plotting the results
fig, axs = plt.subplots(3, 2, figsize=(12, 10))

# Plant population
axs[0, 0].plot(tspan, P, color='green', lw=2)
axs[0, 0].set_title('Plant Population Dynamics')
axs[0, 0].set_xlabel('Time (Days)')
axs[0, 0].set_ylabel('Plant Population')

# Insect population
axs[0, 1].plot(tspan, I, color='orange', lw=2)
axs[0, 1].set_title('Insect Population Dynamics')
axs[0, 1].set_xlabel('Time (Days)')
axs[0, 1].set_ylabel('Insect Population')

# Bat population
axs[1, 0].plot(tspan, B, color='brown', lw=2)
axs[1, 0].set_title('Bat Population Dynamics')
axs[1, 0].set_xlabel('Time (Days)')
axs[1, 0].set_ylabel('Bat Population')

# Bird population
axs[1, 1].plot(tspan, A, color='blue', lw=2)
axs[1, 1].set_title('Bird Population Dynamics')
axs[1, 1].set_xlabel('Time (Days)')
axs[1, 1].set_ylabel('Bird Population')

# Weed population
axs[2, 0].plot(tspan, D, color='purple', lw=2)
axs[2, 0].set_title('Weed Population Dynamics')
axs[2, 0].set_xlabel('Time (Days)')
axs[2, 0].set_ylabel('Weed Population')

# Overall title
fig.suptitle('Ecosystem Dynamics with Seasonal Effects and Agricultural Cycle', fontsize=16)

# Adjust layout
plt.tight_layout()
plt.subplots_adjust(top=0.92)
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值