LeetCode 704 二分查找(c++)


题目要求

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。
  • 示例 1:
    输入: nums = [-1,0,3,5,9,12], target = 9
    输出: 4
    解释: 9 出现在 nums 中并且下标为 4
  • 示例 2:
    输入: nums = [-1,0,3,5,9,12], target = 2
    输出: -1
    解释: 2 不存在 nums 中因此返回 -1

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/binary-search
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。



解法——二分查找

查找数组内某个元素的下标,最简单的做法就是顺序遍历判断,直到某个元素跟我们要找的元素“相等”。这样做的时间复杂度是 O ( n ) O(n) O(n)

但是本题有一些额外的条件:其一是单调增的特性,其二是无重复元素(即我们要找的元素是唯一的)。基于这两个条件,我们可以对顺序遍历进行一定程度的优化,也就是题目要求的二分查找做法。

所谓二分查找,就是利用了该数组的单调的特性,即找到当前数组的中点与目标值进行比对,这样就算运气不好一下没找到,也可以筛掉一半遍历消耗,然后用剩下的一半组成新的数组重复该过程。

class Solution {
public:
    int search(vector<int>& nums, int target) {
    	//数组左侧边界索引i,右侧边界索引j
        int i = 0, j = nums.size()-1;
        
		//当左右两边索引交叉时跳出,即整个数组都扫过了也没有目标元素
        while(i <= j)
        {
            int mid = i + (j-i)/2;
            
            //如果能命中目标最好,否则的话更新边界索引,对“新数组”重复执行该过程直到跳出
            if(nums[mid] == target)
            {
                return mid;
            }else if(nums[mid] < target)
            {
                i = mid+1;
            }else{
                j = mid-1;
            }
        }
        return -1;
    }
};

在这里插入图片描述
这样的二分搜索,其过程类似于在一颗二叉树的找某个叶子节点,其复杂度即使这颗二叉树的深度,即 O ( log ⁡ ( n ) ) O(\log(n)) O(log(n))


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Claude的羽毛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值