Held-Karp算法解决旅行商问题(TSP)

Held-Karp算法是一种用于解决旅行商问题(TSP)的动态规划算法。它由Richard M. Karp在1972年提出,并且是第一个证明TSP问题具有多项式时间算法的算法。Held-Karp算法利用了TSP问题的对称性和结构,将问题分解为更小的子问题,并且利用了贝尔曼最优性原理。

使用Go语言实现Held-Karp算法的一个简化示例。注意,这个示例并没有针对性能进行优化,且可能无法处理大规模问题。

package main

import (
	"fmt"
	"math"
)

const (
	INF = math.MaxFloat64 // 表示无穷大的距离
)

// 计算两个城市之间的距离
func distance(city1, city2 int, distMatrix [][]float64) float64 {
	return distMatrix[city1][city2]
}

// Held-Karp算法
func heldKarpTSP(n int, distMatrix [][]float64) float64 {
	// C[i, s] 表示访问了s个城市,最后一个访问的城市是i的最小成本
	C := make([][]float64, n)
	for i := 0; i < n; i++ {
		C[i] = make([]float64, 1<<n)
	}

	// 初始化C数组
	for i, row := range C {
		for s := 0; s < 1<<n; s++ {
			if s&(s-1) == 0 { // s是2的幂,即只有一个城市被选中
				C[i][s] = distance(0, i, distMatrix)
			} else {
				C[i][s] = INF
			}
		}
	}

	// 动态规划
	for m := 1; m < n; m++ {
		for s := 1 << m; s < 1<<n; s++ {
			for i := 0; i < n; i++ {
				if s&(1<<i) == 0 {
					for k := 0; k < n; k++ {
						if k != i && s&(1<<k) != 0 {
							C[i][s] = min(C[i][s], C[k][s^(1<<i)]+distance(k, i, distMatrix))
						}
					}
				}
			}
		}
	}

	// 返回从城市0开始并返回城市0的最短路径长度
	return C[0][(1<<n)-1]
}

// min返回两个数中的较小值
func min(a, b float64) float64 {
	if a < b {
		return a
	}
	return b
}

func main() {
	// 示例距离矩阵,使用INF表示无穷大的距离
	distMatrix := [][]float64{
		{0, 2, INF, 6, 4},
		{2, 0, 3, INF, 5},
		{INF, 3, 0, 7, INF},
		{6, INF, 7, 0, 8},
		{4, 5, INF, 8, 0},
	}

	n := len(distMatrix) // 城市数量
	fmt.Printf("The shortest path length is: %.2f\n", heldKarpTSP(n, distMatrix))
}

这段代码定义了一个距离矩阵distMatrix,表示城市之间的距离。heldKarpTSP函数实现了Held-Karp算法,它使用动态规划来计算最短路径长度。请注意,由于Held-Karp算法的时间复杂度为𝑂(2𝑛⋅𝑛2)O(2n⋅n2),对于大规模问题,它可能非常慢,并且需要大量的内存。

附:

       旅行商问题(TSP - Traveling Salesman Problem)是组合优化中的一个经典问题,也属于NP-hard问题。它描述了一个旅行者(或销售员)需要访问一系列城市并返回起点,目标是找到总旅行距离(或成本)最短的路径。

问题的数学描述

  1. 假设有 𝑛n 个城市,每个城市用一个点在二维平面上表示。
  2. 每对城市之间存在一个距离 𝑑𝑖𝑗dij​,表示城市 𝑖i 到城市 𝑗j 的距离。
  3. 旅行商需要访问所有城市恰好一次,然后返回起点。
  4. 目标是找到一条路径,使得总旅行距离最短。

问题的形式化: 给定一个距离矩阵 𝐷=[𝑑𝑖𝑗]D=[dij​],其中 𝑑𝑖𝑗dij​ 是城市 𝑖i 到城市 𝑗j 的距离,旅行商问题的目标是找到一条哈密顿回路(Hamiltonian cycle),使得总距离 ∑𝑖=1𝑛−1𝑑𝑝𝑖𝑝𝑖+1+𝑑𝑝𝑛𝑝1∑i=1n−1​dpi​pi+1​+dpnp1​​ 最小,其中 𝑝p 是一个排列,表示城市访问的顺序。

动态规划算法通常用于求解旅行商问题(Traveling Salesman Problem, TSP),这是一个经典的组合优化问题。TSP的目标是在给定的一组城市之间找到一条最短的环形路线,使得每个城市都被访问恰好一次并返回起点。 以下是一个简单的动态规划算法(称为 Held-Karp 算法)的 C 语言实现,它使用了二维数组来存储子问题的最优解: ```c #include <stdio.h> #define INF 99999 // 定义一个极大值,表示未计算路径 // 动态规划辅助函数 int tsp(int graph[][SIZE], int i, int j) { if (i == j) // 如果只有一个城市,则直接返回0 return graph[i][j]; int min_dist = INF; // 初始化最小距离为无穷大 for (int k = 0; k < SIZE; k++) { // 遍历所有中间城市 if (k != i && k != j) { int dist = graph[i][k] + graph[k][j]; // 计算经过k的总距离 min_dist = min(min_dist, tsp(graph, i, k) + tsp(graph, k, j)); // 更新最小距离 } } return min_dist; } int main() { int graph[SIZE][SIZE]; // 城市间的距离矩阵 // 填充矩阵... // 这里假设已经初始化好城市间距离 int n = SIZE; // 城市数量 printf("Minimum distance is %d\n", tsp(graph, 0, n - 1)); // 从0号城市出发到n-1号城市,形成环 return 0; } ``` 在这个代码中,`graph[][]`是一个二维数组,其中 `graph[i][j]` 表示从城市 `i` 到城市 `j` 的距离。`tsp()` 函数递归地处理子问题,每次都尝试选择当前城市和下一个城市之间的最短路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值