OpenCV之图像均衡化

69 篇文章 15 订阅
53 篇文章 15 订阅
本文介绍了直方图均衡化的基本概念,它是如何通过调整像素强度分布来增强图像对比度的方法。重点讲解了OpenCV中equalizeHist函数的使用,并通过实例展示了如何在C++代码中应用该算法。注意了均衡化可能导致的伪轮廓现象和适用场景的局限性。
摘要由CSDN通过智能技术生成

直方图均衡化是灰度图像变换的一个重要应用,它简单高效且易于实现,广泛的应用于图像增强中。图像的像素灰度变化是随机的,直方图的图像高低不齐,直方图均衡化就是使用一定的算法使直方图大值平和的方法。

简单来说,直方图均衡化就是通过拉伸像素强度分布范围来增强图像对比度的一种方法。

均衡化处理后的图像近似均匀分布。均衡化图像的动态范围扩大了,但其本质是扩大了量化间隔,而量化级别反而减少了,因此原来灰度不同的像素经过处理后可能变的像素,形成了一片相同的灰度区域,各区域之间有明显的边界,从而出现了伪轮廓。

在原始图像对比度本来就很高的情况下,如果再使用均衡化,则灰度调和,对比度会降低。在泛白缓和的图像中,均衡化会合并一些像素灰度,从而增大对比度。均衡化后的图像如果再均衡化,则不会有任何变化。

在OpenCV中,equalizeHist函数实现直方图均衡化。

函数原型:

void equalizeHist(InputArray src, OutputArray)
  • 第一个参数:输入图像,Mat类型的对象即可,必须是8位单通道图像。
  • 第二个参数:输出图像,需要和输入图像有一样的尺寸和类型。

采用以下步骤实现图像直方图均衡化:

  • 计算输入图像的直方图
  • 进行直方图归一化,直方图的组距的和为255
  • 计算直方图积分:

  • 以直方图积分作为查询表进行图像变换

equalizeHist()函数实现的灰度直方图均衡化算法,就是把直方图的每个灰度级进行归一化处理,求每种灰度的累积分布,得到一个映射的映射表,然后根据相应的灰度值来修正原图中的每个像素。

代码示例:

#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>

using namespace std;
using namespace cv;

int main()
{
    Mat srcImage;
    srcImage = imread("/Users/dwz/Desktop/cpp/rain.jpg");
    Mat grayImage;
    cvtColor(srcImage, grayImage, COLOR_BGR2GRAY);
    imwrite("gray.jpg", grayImage);
    Mat dstImage;
    equalizeHist(grayImage, dstImage);
    imwrite("test.jpg", dstImage);
    return 0;
}

输入:
 

灰度图:

输出:

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值