线代基础3

复合变换:
两个线性变换的复合变换 依然是线性变换
在这里插入图片描述
复合变换的变换矩阵:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
矩阵乘积:
在这里插入图片描述
逆矩阵:
如果线性变换f 可逆,则从集合X到集合Y的映射f(x)=y的解唯一。
即集合Y中的某个值有且只有一个x与之对应。

AX=b的解
方程组AX=b有解,等价于 b1+b2=0;
在这里插入图片描述
即 向量b(b1,b2)位于如下 这条直线上时 方程组有解。
也就是说 矩阵A将任意x向量全部映射(线性变换)到了这条直线上。
在这里插入图片描述
继续求解:
在这里插入图片描述
当b1,b2都等于0时,所求的解为 A的零空间即
在这里插入图片描述
所以 :AX=b的解就是 某个特定向量(特解)+A的零空间。
因为A的零空间是一条过原点的直线,所以AX=b的解就是平行于这条零空间直线的直线。
在这里插入图片描述

齐次:AX=0
非齐次:AX=b

非齐次方程组有唯一解(AX=b有唯一解)的条件是:
零空间只能有0元素(零空间是平凡的),即唯一解 就是 特解
也是保证1-1映射的条件。

平凡零空间 可以 写成如下方式:
在这里插入图片描述
所以如果矩阵A的零空间为 平凡零空间(只包含零向量),则A各列线性无关
则矩阵A列空间的基 就是A的各列元素。

矩阵可逆的条件:
对于一个m*n矩阵
1、必须映射到上域中的每一个元素。即矩阵的秩等于m
2、必须是1-1映射,上域中的每一个元素在定义域中最多只有一个元素与之对应,即矩阵的秩等于n
所以,一个矩阵可逆,必须是方阵(m=n), 且各列线性无关。

一个方阵各列线性无关,则该矩阵可逆,行简化阶梯型就是个单位矩阵。
在这里插入图片描述
行简化阶梯型 也是线性变换:
将该变换应用到单位矩阵的每一列,即得到变换矩阵
在这里插入图片描述
矩阵乘积的意义:
即一个变换矩阵将另一个矩阵的每一列进行线性变换。
在这里插入图片描述
行简化阶梯型 就是一连串的线性变化,最后得到了单位矩阵。这一连串的线性变化的组合变换就是该矩阵的逆矩阵。
在这里插入图片描述
求逆矩阵的通用方法:
在这里插入图片描述
2*2矩阵的行列式和逆矩阵
行列式:
在这里插入图片描述
逆矩阵:
在这里插入图片描述
当行列式=0 即 ad-bc=0,2*2矩阵没有逆矩阵。

3*3矩阵的行列式和逆矩阵
行列式:
在这里插入图片描述
如果这个行列式等于0 ,则此3*3矩阵没有逆矩阵。

4*4矩阵的行列式和逆矩阵

在这里插入图片描述
这个行列式等于7 ,则此44矩阵有逆矩阵
n
n矩阵行列式以此类推。

沿其他行或列求矩阵行列式
确定好正负号,沿着0最多的某行或某列展开
在这里插入图片描述
当矩阵一行乘以系数时的行列式运算
在这里插入图片描述
当行相加时矩阵行列式的规律
仅限某一行
在这里插入图片描述
交换某两行或有相同行的行列式
交换某两行后,行列式变为负的原行列式
在这里插入图片描述
有相同行则矩阵不可逆(无法行简化成单位矩阵) 行列式为0.

行变换后的行列式
型如
在这里插入图片描述
行变换后行列式不变。

上三角/下三角 行列式
上三角 或 下三角 矩阵的行列式 等于 对角线乘积。
在这里插入图片描述
由于矩阵行变化后 行列式不变,所以某些矩阵可以通过行变化成上三角 或 下三角矩阵,简化求解行列式
在这里插入图片描述
平行四边形的面积与行列式的关系:
由矩阵A列向量构成的平行四边形的面积如下:
在这里插入图片描述
则 该面积 = 矩阵A的行列式的绝对值。

行列式作为面积因子
如图:长方形(区域) 经过T变换,得到 平行四边形(区域)
长方形面积=k1k2(根据平行四边形的面积与行列式的关系)
平行四边形的面积=k1
k2(ad-bc)
(ad-bc) 是变换T的行列式。
所以 一个变换矩阵的行列式 就是一个区域面积 和 变换后的区域面积的比例因子
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值