目录
4.1 矩阵的实质意义
- 第一列代表变换过的i帽向量
- 第二列代表变换过的j帽向量
- 整个矩阵代表一个向量进行线性变换的规则
矩阵的乘法就是让一个向量[x,y]经过矩阵定义的线性变换的规则后得到的目标向量
4.2 复合变换
想对向量进行复合变换:先旋转再剪切,有两种方式:
- 先让原向量左乘旋转矩阵得到经过旋转变换后的矩阵,再左乘剪切矩阵得到经过剪切之后的矩阵值,分两步矩阵乘法来进行对复合变换的操作
- 得到经过复合变换后的i和j向量,将其拼合成一个复合矩阵,让原向量与其相乘
进一步即可得出:两个变换矩阵相乘=复合矩阵
两个矩阵相乘:两个线性变换相继对向量进行作用
注意该相乘需要从右往左读,可以等价于复合函数的写法,先进行操作的写在里面,后进行操作的写在外面
4.3 矩阵的乘法
1. 矩阵乘法计算公式
- 首先看M1矩阵的第一列,相当于变换后的i向量,让它与M2相乘,得到复合矩阵的第一列
- 再看M1矩阵的第二列,相当于变换后的j向量,让它与M2相乘,得到复合矩阵的第二列
- 即可得到矩阵的计算公式,本质上还是对向量的线性变换
2. 矩阵乘法的顺序
注意:矩阵相乘的顺序影响最终的结果,因为矩阵乘法的几何意义是对向量的变换 ,因此变换的顺序不同,对应的变换结果必然不同
3. 矩阵乘法的结合律
1. 矩阵乘法满足结合律,即加括号的位置不影响矩阵乘法的计算结果,因为不管在哪里加括号,都是3个同样的变换用3个同样的顺序以此作用的效果
2. 首先应用C变换,然后应用B变换和A变换 == 首先应用C变换和B变换,然后应用A变换