线性代数的本质4 矩阵乘法与线性复合变换

目录

4.1 矩阵的实质意义

4.2 复合变换

 4.3 矩阵的乘法

1. 矩阵乘法计算公式 

2. 矩阵乘法的顺序

3. 矩阵乘法的结合律


4.1 矩阵的实质意义

  • 第一列代表变换过的i帽向量
  • 第二列代表变换过的j帽向量
  • 整个矩阵代表一个向量进行线性变换的规则

矩阵的乘法就是让一个向量[x,y]经过矩阵定义的线性变换的规则后得到的目标向量

  

4.2 复合变换

想对向量进行复合变换:先旋转再剪切,有两种方式:

  1.  先让原向量左乘旋转矩阵得到经过旋转变换后的矩阵,再左乘剪切矩阵得到经过剪切之后的矩阵值,分两步矩阵乘法来进行对复合变换的操作
  2. 得到经过复合变换后的i和j向量,将其拼合成一个复合矩阵,让原向量与其相乘

 

进一步即可得出:两个变换矩阵相乘=复合矩阵

两个矩阵相乘:两个线性变换相继对向量进行作用

注意该相乘需要从右往左读,可以等价于复合函数的写法,先进行操作的写在里面,后进行操作的写在外面 

 4.3 矩阵的乘法

1. 矩阵乘法计算公式 

  •  首先看M1矩阵的第一列,相当于变换后的i向量,让它与M2相乘,得到复合矩阵的第一列
  • 再看M1矩阵的第二列,相当于变换后的j向量,让它与M2相乘,得到复合矩阵的第二列
  • 即可得到矩阵的计算公式,本质上还是对向量的线性变换

2. 矩阵乘法的顺序

注意:矩阵相乘的顺序影响最终的结果,因为矩阵乘法的几何意义是对向量的变换 ,因此变换的顺序不同,对应的变换结果必然不同

3. 矩阵乘法的结合律

1. 矩阵乘法满足结合律,即加括号的位置不影响矩阵乘法的计算结果,因为不管在哪里加括号,都是3个同样的变换用3个同样的顺序以此作用的效果

2. 首先应用C变换,然后应用B变换和A变换 == 首先应用C变换和B变换,然后应用A变换

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值