04 - 矩阵乘法与线性变换复合

回到目录

04 - 矩阵乘法与线性变换复合

  1. 为了更好的讲解矩阵*矩阵的思想。我们回到上一节的线性变换的两个普通的原则“保持直线”和“原点不变”。可以总结出2种变换的方式:旋转和剪切
    在这里插入图片描述

    上面这个坐标基让我们先旋转

    再剪切(剪切可能从字面上有些不好理解,可以想象一下剪刀

​ 然而事实是,如果我们又旋转又剪切,这样一种复合变换也是线性变换,依旧可以得到变换后所有坐标的点,只要我们有 1.i和j的新坐标(并且试着写成矩阵,这里我们起个名字叫复合矩阵如下图) 2.某个待变换的原坐标

​ 更进一步的,这种复合变换也不过是2步变换,先旋转,再组合。如果我们依次写出旋转和剪切的i,j矩阵,并且观察它对某点(x,y)的线性变换时
在这里插入图片描述

它一定上面的复合矩阵一步到位的效果一样

​ 然后就可以轻松得到矩阵*矩阵的结果:

在这里插入图片描述

​ 因此矩阵*矩阵的几何意义,就是两个线性变换相继作用,只是要记住我们是先旋转,再剪切,因此你会发现应该从右往左读这个式子。(计算从左到右,线性变换的几何角度从右往左)

  1. 发现了复合和乘法存在这样的关系后,不由得去思考如何计算得到复合矩阵。这里给一个全新的旋转与剪切,并且给他们命名为M1和M2:

    从右往左看,先看M1,注意我这里圈出了M1的第一列,不难理解,圈出的实际上是第一次变换中的i,然后我们“提取”这个i,看看M2对它有什么变换作用:

    我们自然得到了M2变换后i的新坐标,这里如果不熟悉可以看一下上一节。类似的,对于M1的j坐标也可以得到M2变换后新j坐标。然后我们就得到了2个新坐标!这就得到了矩阵乘法的答案。

  2. 此思想同样具有普适性:除了背住“第1行乘第1列+第1行乘第2列”这样的公式之外,应该学会从线性变换的角度去思考矩阵乘法——两个变换相继作用

  3. 利用这种形象而非计算的“旋转剪切”思维。可以看到对于另一个经典问题**“矩阵乘法是否有交换律”**有一个很好的答案:
    ​

    先剪切后旋转90度: 在这里插入图片描述

    先旋转90度后剪切

    在这里插入图片描述

    显然得到了不一样的结果,所以矩阵乘法没有交换律

  4. 然后我们可以思考矩阵乘法是否有结合律,从这个角度看很容易,毕竟只是将同样的几个变换用同样的顺序依次作用而已。b站下一节是一个5min的补充小视频,会将二维拓展到三维——2*2的矩阵将进化成3*3的矩阵。这里不再赘述。

回到目录

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值