基于径向基函数的函数插值
1. 函数插值
函数插值问题: 用形式简单的插值函数 f ^ ( x ) \hat f(x) f^(x) 近似原函数
( 1 ) \qquad(1) (1) 设函数 y = f ( x ) y=f(x) y=f(x) 在某个区间上有定义,并且已知该区间上的一些数据点 { x i , y i } \{x_i,y_i\} {xi,yi} 严格满足 y i = f ( x i ) , i = 1 , ⋯ , N y_i=f(x_i),i=1,\cdots,N yi=f(xi),i=1,⋯,N,这些数据点称为“控制节点”或“插值节点”
( 2 ) \qquad(2) (2) 如果存在一个形式上比较简单(比如 n n n 次多项式)的函数 f ^ ( x ) \hat{f}(x) f^(x),使得 f ^ ( x i ) = y i , i = 1 , ⋯ , N \hat f(x_i)=y_i,i=1,\cdots,N f^(xi)=yi,i=1,⋯,N 都成立,就称 f ^ ( x ) \hat{f}(x) f^(x) 为 f ( x ) f(x) f(x) 的插值函数。
\qquad 典型的函数插值方法:拉格朗日插值和牛顿插值、 H e r m i t e Hermite Hermite插值、样条插值等。
与“函数逼近”的主要区别:
插值函数 f ^ ( x ) \hat f(x) f^(x) 必须经过“插值节点”,也就是要满足 f ^ ( x i ) = y i , i = 1 , ⋯ , N \hat f(x_i)=y_i,i=1,\cdots,N f^(xi)=yi,i=1,⋯,N
2. RBF函数插值
\qquad 与拉格朗日插值之类的常规函数插值不同,基于核函数的函数插值“通过引入核函数”来刻画数据的局部化特征。
\qquad 径向基函数 (Radial Basis Function,RBF) \text{(Radial\ Basis\ Function,RBF)} (Radial Basis Function,RBF) 就是一类特殊的基函数,最常用的就是“高斯基函数”,定义为:
φ ( x ) = e − x 2 2 σ 2 \qquad\qquad\qquad\varphi(x)=e^{-\frac{x^2}{2\sigma^2}} φ(x)=e−2σ2x2 (以一维情况为例)
\qquad
RBF函数插值:
f
^
(
x
)
=
∑
i
=
1
N
w
i
φ
(
∥
x
−
x
i
∥
)
\hat{f}(x)=\displaystyle\sum_{i=1}^Nw_i\varphi(\parallel x-x_i\parallel)
f^(x)=i=1∑Nwiφ(∥x−xi∥)
\qquad 假设有 N N N 个插值节点,也就是已知 { x j , y j } ∣ j = 1 N \{x_j,y_j\}\big |_{j=1}^N {xj,yj}∣ ∣j=1N,其中 f ^ ( x j ) = y j = f ( x j ) \hat{f}(x_j)=y_j=f(x_j) f^(xj)=yj=f(xj),如下图所示。
\qquad
图中,红色实线为真实函数曲线,绿色空心圆圈代表插值节点 ( x j , y j ) (x_j,y_j) (xj,yj),蓝色实心点为RBF插值所求得的权值 w j w_j wj
\qquad 将 { x j , y j } ∣ j = 1 N \{x_j,y_j\}\big |_{j=1}^N {xj,yj}∣ ∣j=1N 带入方程 f ^ ( x ) = ∑ i = 1 N w i φ ( ∥ x − x i ∥ ) \hat{f}(x)=\displaystyle\sum_{i=1}^Nw_i\varphi(\parallel x-x_i\parallel) f^(x)=i=1∑Nwiφ(∥x−xi∥),可得到:
[ φ 11 φ 12 ⋯ φ 1 N φ 21 φ 22 ⋯ φ 2 N ⋮ ⋮ ⋮ φ 11 φ 12 ⋯ φ 1 N ] ⏟ Φ [ w 1 w 2 ⋮ w N ] ⏟ W = [ y 1 y 2 ⋮ y N ] ⏟ y \qquad\qquad\underbrace{\left[ \begin{matrix} \varphi_{11} & \varphi_{12} & \cdots & \varphi_{1N} \\ \varphi_{21} & \varphi_{22} & \cdots & \varphi_{2N} \\ \vdots & \vdots & &\vdots \\ \varphi_{11} & \varphi_{12} & \cdots & \varphi_{1N} \end{matrix} \right] }_{\Phi}\underbrace{ \left[ \begin{matrix} w_1 \\ w_2 \\ \vdots \\ w_N \end{matrix} \right]}_{\bold W}=\underbrace{\left[ \begin{matrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{matrix} \right]}_{\bold y} Φ ⎣ ⎡φ11φ21⋮φ11φ12φ22⋮φ12⋯⋯⋯φ1Nφ2N⋮φ1N⎦ ⎤W ⎣ ⎡w1w2⋮wN⎦ ⎤=y ⎣ ⎡y1y2⋮yN⎦ ⎤,其中 φ j i = φ ( ∥ x j − x i ∥ ) \varphi_{ji}=\varphi(\parallel x_j-x_i\parallel) φji=φ(∥xj−xi∥)
\qquad
\qquad
其中,
Φ
=
[
φ
j
i
]
\Phi=[\varphi_{ji}]
Φ=[φji] 为插值矩阵。因为
φ
j
i
=
φ
(
∥
x
j
−
x
i
∥
)
=
φ
i
j
\varphi_{ji}=\varphi(\parallel x_j-x_i\parallel)=\varphi_{ij}
φji=φ(∥xj−xi∥)=φij,因此插值矩阵是对称的。对于高斯核函数而言,插值矩阵的对角线元素的值为
1
1
1。
\qquad 将线性方程组记为 Φ W = y \Phi\bold W=\bold y ΦW=y,该方程组的第 j j j 行为:
f ^ ( x j ) = y j = w 1 φ ( ∥ x j − x 1 ∥ ) + w 2 φ ( ∥ x j − x 2 ∥ ) + ⋯ + w N φ ( ∥ x j − x N ∥ ) \qquad\qquad\hat{f}(x_j)=y_j=w_1\varphi(\parallel x_j-x_1\parallel)+w_2\varphi(\parallel x_j-x_2\parallel)+\cdots+w_N\varphi(\parallel x_j-x_N\parallel) f^(xj)=yj=w1φ(∥xj−x1∥)+w2φ(∥xj−x2∥)+⋯+wNφ(∥xj−xN∥)
\qquad 因此,可求出 RBF \text{RBF} RBF 插值的系数为: W = Φ − 1 y \bold W=\Phi^{-1}\bold y W=Φ−1y,其示意图如下图所示。
Micchelli定理可以保证采用高斯函数时,插值矩阵 Φ \Phi Φ 是可逆的(只要插值节点互不相同)。
\qquad
代码实现
import numpy as np
import matplotlib.pyplot as plt
def gen_data(x1,x2):
y_sample = np.sin(np.pi*x1/2)+np.cos(np.pi*x1/3)
y_all = np.sin(np.pi*x2/2)+np.cos(np.pi*x2/3)
return y_sample, y_all
def kernel_interpolation(y_sample,x1,sig):
gaussian_kernel = lambda x,c,h: np.exp(-(x-x[c])**2/(2*(h**2)))
num = len(y_sample)
w = np.zeros(num)
int_matrix = np.asmatrix(np.zeros((num,num)))
for i in range(num):
int_matrix[i,:] = gaussian_kernel(x1,i,sig)
w = int_matrix.I * np.asmatrix(y_sample).T
return w
def kernel_interpolation_rec(w,x1,x2,sig):
gkernel = lambda x,xc,h: np.exp(-(x-xc)**2/(2*(h**2)))
num = len(x2)
y_rec = np.zeros(num)
for i in range(num):
for k in range(len(w)):
y_rec[i] = y_rec[i] + w[k]*gkernel(x2[i],x1[k],sig)
return y_rec
if __name__ == '__main__':
snum = 20 # control point数量
ratio = 20 # 总数据点数量:snum*ratio
sig = 1 # 核函数宽度
xs = -8
xe = 8
x1 = np.linspace(xs,xe,snum)
x2 = np.linspace(xs,xe,(snum-1)*ratio+1)
y_sample, y_all = gen_data(x1,x2)
plt.figure(1)
w = kernel_interpolation(y_sample,x1,sig)
y_rec = kernel_interpolation_rec(w,x1,x2,sig)
plt.plot(x2,y_rec,'k')
plt.plot(x2,y_all,'r:')
plt.ylabel('y')
plt.xlabel('x')
for i in range(len(x1)):
plt.plot(x1[i],y_sample[i],'go',markerfacecolor='none')
plt.legend(labels=['reconstruction','original','control point'],loc='lower left')
plt.title('kernel interpolation:$y=sin(\pi x/2)+cos(\pi x/3)$')
plt.show()
运行结果:
在相同区间、分别采用 8 , 12 , 16 , 20 8,12,16,20 8,12,16,20 个控制节点 (control point) \text{(control\ point)} (control point) 进行函数插值的结果
显然,插值节点过少,无法体现整个函数的特征;插值节点越多,函数插值的结果越精确
扩大插值区间范围,控制节点 (control point) \text{(control\ point)} (control point) 也需要增加数量,才能保持函数插值的准确性
\quad
另外,
Scipy
\text{Scipy}
Scipy 的插值模块也提供了
RBF
\text{RBF}
RBF 插值,其实现代码如下:
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import Rbf
f = lambda x: np.sin(np.pi*x/2)+np.cos(np.pi*x/3)
snum = 20 # control point数量
ratio = 20 # 总数据点数量:snum*ratio
xs = -8
xe = 8
x1 = np.linspace(xs,xe,snum) # control points
x2 = np.linspace(xs,xe,(snum-1)*ratio+1) # 作图总数据点
y1 = f(x1) # control points
rf = Rbf(x1, y1) # reconstructed Rbf function
y2 = rf(x2) # Rbf reconstruction
plt.plot(x2, y2, 'k-', x2, f(x2),'r-', x1, y1, 'go', markerfacecolor='none')
plt.legend(["Radial basis functions", "Orignal", "control point"],loc='best')
plt.show()
其运行结果如下:
\quad
此外,
RBF
\text{RBF}
RBF函数插值还可以通过径向基函数网络来实现。
\quad
参考:函数插值的python实现——拉格朗日、牛顿插值