一、【机器学习】初识机器学习


一、前言

踏上机器学习之旅,面对浩瀚的网络资源,初学者往往感到既兴奋又迷茫。为了帮助您高效且有序地入门这一领域,我特地整理了一份精简而实用的学习指南,旨在为刚接触机器学习的朋友铺平道路。

(一)、基础理论奠基

  • 数学预备:理解线性代数、微积分、概率论与统计学基础是至关重要的。推荐《统计学习方法》(李航)和《线性代数及其应用》(Gilbert Strang)作为入门读物。
  • 机器学习概览:从《机器学习》(周志华)或《Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow》(Aurélien Géron)开始,建立对机器学习基本概念、分类、回归、聚类、强化学习等核心领域的初步认识。

(二)、编程与工具掌握

  • Python编程:作为机器学习领域的首选语言,熟练掌握Python是必须的。《Python编程:从入门到实践》(Eric Matthes)是不错的起点。
  • 工具库熟悉:学习使用主流的机器学习库,如NumPy、Pandas(数据处理),Matplotlib、Seaborn(数据可视化),以及Scikit-Learn(经典机器学习算法实现)。官方文档和实战教程是学习的好帮手。

(三)、算法深入理解与实践

  • 循序渐进:从简单到复杂,逐一攻克。开始可以先从线性回归、逻辑回归等入手,随后深入理解SVM、决策树、随机森林等算法。动手实践是关键,Kaggle竞赛、Google Colab等平台提供了丰富的练习机会。
  • 深度学习入门:掌握TensorFlow或PyTorch至少其中之一,通过实现简单的神经网络逐步过渡到深度学习模型,如CNN、RNN和Transformer。《深度学习》(Ian Goodfellow等著)是深入学习的好书。

(四)、项目实战与案例分析

  • 实战项目:挑选与自己兴趣和目标领域相关的项目进行实践,如图像分类、文本情感分析、推荐系统等。GitHub和Kaggle上有很多现成的项目供参考和学习。
  • 案例学习:阅读并分析他人成功案例,理解他们是如何解决问题的,从中吸取经验。Coursera、edX等平台上有多门课程包含详细的案例分析。

(五)、持续学习与社区交流

  • 跟踪最新进展:订阅机器学习领域的顶级期刊、博客(如Arxiv Sanity Preserver、Towards Data Science)和会议论文,了解最新研究成果。
  • 参与社区:加入机器学习论坛(如Reddit的r/MachineLearning)、微信群、QQ群等,提问、分享、讨论,与同行交流心得,解决遇到的问题。

二、机器学习算法

机器学习分为监督学习和非监督学习,监督学习包括分类、回归算法。非监督学习包括聚类、密度估计算法模型。

三、机器学习中算法的定义

在机器学习中,分类、回归、聚类和密度估计是四种基本且重要的任务类型,它们各自针对不同类型的问题和应用场景。以下是它们的定义及主要区别:

(一)、分类(Classification)

定义:分类任务的目标是学习一个模型,该模型能够将输入数据分配到预定义的几个类别中的一个。这是一个监督学习问题,需要有一组已经标记好类别的训练数据,模型会根据这些数据学习如何区分不同类别。
例子:垃圾邮件检测(垃圾邮件 vs. 非垃圾邮件)、图像识别(猫 vs. 狗)。

(二)、回归(Regression)

定义:回归任务同样是监督学习的一种,但它关注的是预测一个连续值的输出,而不是离散的类别。模型试图学习输入特征与连续目标变量之间的关系。
例子:房价预测、股票价格预测。

(三)、聚类(Clustering)

定义:聚类是一种无监督学习方法,目的是将数据集中的对象分成多个组(或称为簇),使得同一簇内的对象彼此相似,而不同簇的对象差异较大。聚类不依赖于预先定义的类别标签,而是根据数据本身的相似性或距离进行分组。
例子:客户细分、文档主题发现。

(四)、密度估计(Density Estimation)

定义:密度估计是统计学和机器学习中的一种方法,旨在估计数据的概率分布。即给定一组观测数据,模型试图学习数据分布的概率密度函数,从而可以预测在任何给定点或区域的数据出现的相对概率。
例子:异常检测、生成模型中的先验概率分布学习。

四、机器学习中算法的主要区别

  • 监督与无监督:分类和回归属于监督学习,需要带有标签的训练数据;而聚类和密度估计通常是无监督学习,不依赖于预先标注的数据。
  • 输出类型:分类和回归的主要区别在于输出的性质,前者是离散的类别标签,后者是连续数值。聚类和密度估计虽然都处理未标记数据,但目的不同,聚类关注数据分组,密度估计则关注数据分布的估计。
  • 应用场景:分类和回归常用于预测和决策制定,聚类用于数据探索和分群分析,密度估计则在数据生成、异常检测等方面发挥作用。

五、机器学习算法各类算法模型

(一)、监督学习

1、分类

  • 逻辑回归 (Logistic Regression)
  • 支持向量机 (SVM) - 用于分类
  • K-近邻算法 (K-NN)
  • 决策树 (Decision Trees)
  • 随机森林 (Random Forests)
  • 梯度提升机 (Gradient Boosting Machine, GBM)
  • 神经网络 (Neural Networks)
  • 卷积神经网络 (CNN) - 在图像分类中特别有效
  • 循环神经网络 (RNN) - 适用于序列数据分类

2、回归

  • 线性回归 (Linear Regression)
  • 局部加权线性回归 (Locally Weighted Linear Regression, LWLR)
  • 岭回归 (Ridge Regression)
  • Lasso回归 (Least Absolute Shrinkage and Selection Operator)
  • 弹性网回归 (Elastic Net Regression)
  • 神经网络回归
  • 支持向量回归 (SVR)

(二)、无监督学习

1、聚类

  • K-均值 (K-Means)
  • DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
  • 层次聚类 (Hierarchical Clustering)
  • 均值漂移 (Mean Shift)
  • 谱聚类 (Spectral Clustering)
  • ** OPTICS (Ordering Points To Identify the Clustering Structure)**

2、密度估计

  • Kernel Density Estimation (KDE)
  • 高斯混合模型 (Gaussian Mixture Models, GMM)
  • 自编码器 (Autoencoders) - 尤其是变分自编码器 (VAEs) 可用于密度估计
  • 隐马尔可夫模型 (Hidden Markov Models, HMMs) - 在序列数据的密度估计中应用

总结

通过以上的机器学习知识的总结,已经对基本的机器学习算法模型和定义进行区分。接下来对算法深入理解与实践进行学习。不足之处望以提出更正。

  • 9
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值