四十、【人工智能】【机器学习】- 梯度下降(Gradient Descent Algorithms)算法模型

 

系列文章目录

第一章 【机器学习】初识机器学习

第二章 【机器学习】【监督学习】- 逻辑回归算法 (Logistic Regression)

第三章 【机器学习】【监督学习】- 支持向量机 (SVM)

第四章【机器学习】【监督学习】- K-近邻算法 (K-NN)

第五章【机器学习】【监督学习】- 决策树 (Decision Trees)

第六章【机器学习】【监督学习】- 梯度提升机 (Gradient Boosting Machine, GBM)

第七章 【机器学习】【监督学习】-神经网络 (Neural Networks)

第八章【机器学习】【监督学习】-卷积神经网络 (CNN)

第九章【机器学习】【监督学习】-循环神经网络 (RNN)

第十章【机器学习】【监督学习】-线性回归

第十一章【机器学习】【监督学习】-局部加权线性回归 (Locally Weighted Linear Regression, LWLR)

第十二章【机器学习】【监督学习】- 岭回归 (Ridge Regression)

十三、【机器学习】【监督学习】- Lasso回归 (Least Absolute Shrinkage and Selection Operator)

十四、【机器学习】【监督学习】- 弹性网回归 (Elastic Net Regression)

十五、【机器学习】【监督学习】- 神经网络回归 

十六、【机器学习】【监督学习】- 支持向量回归 (SVR)

十七、【机器学习】【非监督学习】- K-均值 (K-Means) 

十八、【机器学习】【非监督学习】- DBSCAN (Density-Based Spatial Clustering of Applications with Noise)十九、【机器学习】【非监督学习】- 层次聚类 (Hierarchical Clustering)二十、【机器学习】【非监督学习】- 均值漂移 (Mean Shift)

二十一、【机器学习】【非监督学习】- 谱聚类 (Spectral Clustering)​​ 


目录

系列文章目录

一、基本定义

(一)、监督学习

(二)、监督学习的基本流程

(三)、监督学习分类算法(Classification)

二、 梯度下降算法(Gradient Descent Algorithms)

(一)、定义

(二)、基本概念

(三)训练过程

标准梯度下降 (Batch Gradient Descent)

随机梯度下降 (Stochastic Gradient Descent, SGD)

(四)、特点

(五)、适用场景

(六)、扩展

三、总结

四、相关书籍介绍


一、基本定义

(一)、监督学习

        监督学习(Supervised Learning)是机器学习中的一种主要方法,其核心思想是通过已知的输入-输出对(即带有标签的数据集)来训练模型,从而使模型能够泛化到未见的新数据上,做出正确的预测或分类。在监督学习过程中,算法“学习”的依据是这些已标记的例子,目标是找到输入特征与预期输出之间的映射关系。

(二)、监督学习的基本流程

        数据收集:获取包含输入特征和对应正确输出标签的训练数据集。
        数据预处理:清洗数据,处理缺失值,特征选择与转换,标准化或归一化数据等,以便于模型学习。
        模型选择:选择合适的算法,如决策树、支持向量机、神经网络等。
        训练:使用训练数据集调整模型参数,最小化预测输出与实际标签之间的差距(损失函数)。
        验证与调优:使用验证集评估模型性能,调整超参数以优化模型。
        测试:最后使用独立的测试集评估模型的泛化能力,确保模型不仅在训练数据上表现良好,也能在未见过的新数据上做出准确预测。

(三)、监督学习分类算法(Classification)

        定义:分类任务的目标是学习一个模型,该模型能够将输入数据分配到预定义的几个类别中的一个。这是一个监督学习问题,需要有一组已经标记好类别的训练数据,模型会根据这些数据学习如何区分不同类别。
        例子:垃圾邮件检测(垃圾邮件 vs. 非垃圾邮件)、图像识别(猫 vs. 狗)。


二、 梯度下降算法(Gradient Descent Algorithms)

(一)、定义

Gradient Descent(梯度下降)算法是一种迭代优化算法,用于求解最小化问题,特别是在机器学习和深度学习领域中寻找损失函数的最小值。其基本思想是沿着目标函数梯度的反方向(即函数下降最快的方向)更新参数,以逐步逼近函数的最小值点。梯度下降算法可以应用于各种类型的函数,但最常用于求解无约束优化问题。

(二)、基本概念

  1. 目标函数: 梯度下降的目标函数通常是损失函数,它衡量模型预测与实际值之间的差距。
  2. 梯度: 梯度是目标函数在某一点的导数或偏导数,表示函数在该点的斜率或方向导数,指向函数增长最快的方向。
  3. 学习率: 学习率(γ 或 η)是更新参数时的步长,控制着每次迭代中参数更新的幅度。
  4. 参数更新公式: 梯度下降更新参数的公式为 ,其中 xt​ 是当前参数,γ 是学习率,∇f(xt​) 是目标函数在当前参数处的梯度。

(三)训练过程

梯度下降算法的训练过程是机器学习和深度学习中至关重要的环节,其目标是通过迭代更新参数来最小化损失函数。下面是对训练过程的详细分解,包括不同的梯度下降变种以及它们的特点:

标准梯度下降 (Batch Gradient Descent)
  1. 初始化参数:选择初始参数值,通常是随机的。
  2. 计算梯度:在当前参数值下,计算整个训练集上的损失函数的梯度。
  3. 更新参数:使用计算出的梯度和预先设定的学习率更新参数。
  4. 重复步骤2和3:直到满足停止条件,如梯度足够小、达到最大迭代次数或参数变化低于某个阈值。

特点:保证在凸函数中收敛至全局最小值,但在大数据集上计算梯度非常耗时。

随机梯度下降 (Stochastic Gradient Descent, SGD)
  1. 初始化参数:同样选择初始参数值。
  2. 随机选取样本:每次迭代从训练集中随机选取一个样本。
  3. 计算梯度:仅基于该样本计算损失函数的梯度。
  4. 更新参数:使用该梯度和学习率更新参数。
  5. 重复步骤2至4:直到满足停止条件。

(四)、特点

  • 简单易用: 梯度下降算法概念简单,易于理解和实现。
  • 收敛性: 在适当条件下,梯度下降可以收敛到局部最小值。
  • 对学习率敏感: 学习率的选择对算法的收敛速度和是否收敛有显著影响。
  • 可能陷入局部最小: 梯度下降可能无法跳出局部最小值,尤其是在非凸函数中。

(五)、适用场景

  • 线性回归: 用于拟合最佳直线或超平面。
  • 逻辑回归: 用于分类问题,特别是二分类问题。
  • 神经网络: 用于训练神经网络,包括深度学习模型。

(六)、扩展

梯度下降算法有多种变体,包括:

  1. Batch Gradient Descent: 使用所有训练数据计算梯度,精确但计算量大。
  2. Stochastic Gradient Descent (SGD): 每次仅使用一个样本计算梯度,更新频繁,但可能更不稳定。
  3. Mini-batch Gradient Descent: 折中方案,每次使用一小批样本计算梯度,结合了两者的优势。
  4. Momentum: 引入动量项以加速收敛,帮助算法更快地穿过平坦区域。
  5. Adaptive Learning Rate Methods: 如 AdaGrad、RMSprop 和 Adam,自适应调整学习率,以改善学习过程。

三、总结

梯度下降及其变体是机器学习和深度学习中不可或缺的优化算法,广泛应用于参数优化和模型训练。

四、相关书籍介绍

《Python机器学习算法》这本书是由赵志勇编写,由电子工业出版社出版的一本关于机器学习的入门书籍,出版时间为2017年7月。该书的特点是结合理论与实践,旨在帮助读者不仅理解机器学习算法的理论基础,而且能够动手实践,最终熟练掌握算法的应用。以下是本书的主要内容和适用读者群体的总结:

内容概览

本书分为六个主要部分:

  1. 基本概念:介绍监督学习、无监督学习和深度学习的基本概念。
  2. 分类算法:包括Logistic回归、Softmax Regression、Factorization Machine、支持向量机(SVM)、随机森林和BP神经网络等。
  3. 回归算法:涵盖线性回归、岭回归和CART树回归。
  4. 聚类算法:如K-Means、Mean Shift、DBSCAN和Label Propagation算法。
  5. 推荐算法:基于协同过滤、矩阵分解和基于图的推荐算法。
  6. 深度学习:介绍AutoEncoder和卷积神经网络(CNN)。

此外,本书还特别安排了一章来讲解算法在具体项目中的实践案例,以及附录部分介绍了Python语言、numpy库和TensorFlow框架的使用方法。

适用读者

这本书适合以下几类读者:

  • 机器学习初学者:书中从算法原理出发,逐步深入,适合没有机器学习背景的读者入门。
  • 具有一定项目经验的读者:书中不仅有理论介绍,还有大量实践代码,可以帮助已有一定经验的读者深化理解,提升技能。
  • 对推荐系统、广告算法和深度学习感兴趣的读者:书中详细介绍了这些领域的实用算法,有助于读者在这些方向上进行深入研究。

总之,《Python机器学习算法》是一本全面介绍机器学习算法的书籍,它兼顾理论与实践,无论是对初学者还是有一定经验的读者,都能从中找到适合自己的内容。

书籍下载链接:

链接:https://pan.baidu.com/s/1ngX9yoC1HMZ2ORmHvSEtlA?pwd=0qbm 
提取码:0qbm 

  • 23
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
梯度下降优化算法概述 梯度下降是一种常用的优化方法,可以帮助我们找到使目标函数最小化或最大化的参数。随着机器学习和深度学习的发展,各种梯度下降算法也不断涌现。以下是一些常用的梯度下降优化算法的概述: 1. 批量梯度下降(Batch Gradient Descent):在每次迭代中,批量梯度下降使用所有样本的梯度来更新模型参数。适用于训练集较小、模型参数较少的情况。 2. 随机梯度下降(Stochastic Gradient Descent):在每次迭代中,随机梯度下降使用一个单独的样本来更新模型参数。适用于训练集较大、模型参数较多的情况。 3. 小批量梯度下降(Mini-batch Gradient Descent):小批量梯度下降是一种介于批量梯度下降和随机梯度下降之间的方法。它在每次迭代中使用一小部分样本的梯度来更新模型参数。适用于训练集规模较大的情况。 4. 动量(Momentum):动量算法加入了“惯性”的概念,可以加速梯度下降的收敛速度。在每次迭代中,动量算法使用上一次的梯度信息来更新模型参数。 5. 自适应梯度下降(Adaptive Gradient Descent):自适应梯度下降可以自适应地调整每个模型参数的学习率,以便更快地收敛到最优解。比如,Adagrad算法可以针对每个参数单独地调整学习率。 6. 自适应矩估计(Adaptive Moment Estimation):Adam算法是一种结合了Momentum和Adaptive Gradient Descent算法。它可以自适应调整每个参数的学习率,并利用二阶矩来调整动量。 每种梯度下降算法都有其适用的场合,需要根据问题的性质来选择合适的算法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值