背景介绍
一、玻尔兹曼机
玻尔兹曼机简单地说就是一个马尔科夫随机场(Markov Random Field),即一个无向图模型。但是玻尔兹曼机比无向图模型还是多了一些东西,就是玻尔兹曼机将其中的节点分为两类,一类是 hidden nodes,另一类是 visible nodes。
如上图所示,就是一个玻尔兹曼机,其中蓝色的是 hidden nodes,白色的是 visible nodes。
对于一个无向图模型来说,最重要的就是因子分解(Hammersley Clifferd Theorem):(基于最大团的概念)
P
(
x
)
=
1
z
∏
i
=
1
K
ψ
i
(
x
c
i
)
s
.
t
.
ψ
>
0
K
表
示
最
大
团
的
个
数
c
i
表
示
最
大
团
x
c
i
表
示
最
大
团
对
应
的
随
机
变
量
集
合
ψ
i
(
x
c
i
)
是
势
函
数
z
是
归
一
化
因
子
P(x) = \frac 1z\prod _{i = 1}^{K} \psi_i(x_{ci})\\ s.t. \quad \psi>0 \\ K表示最大团的个数\\ ci表示最大团\\ x_{ci}表示最大团对应的随机变量集合\\ \psi_i(x_{ci})是势函数\\ z是归一化因子
P(x)=z1i=1∏Kψi(xci)s.t.ψ>0K表示最大团的个数ci表示最大团xci表示最大团对应的随机变量集合ψi(xci)是势函数z是归一化因子
一
般
取
ψ
为
指
数
函
数
,
即
可
保
证
大
于
0
ψ
i
(
x
c
i
)
=
e
x
p
{
−
E
(
x
c
i
)
}
P
(
x
)
=
1
z
∏
i
=
1
K
ψ
i
(
x
c
i
)
=
1
z
∏
i
=
1
K
e
−
E
(
x
c
i
)
=
1
z
e
−
∑
i
=
1
K
E
(
x
c
i
)
一般取\psi为指数函数,即可保证大于0 \\ \psi_i(x_{ci})=exp\{ -E(x_{ci}) \}\\ \begin{aligned} P(x) &= \frac 1z\prod _{i = 1}^{K} \psi_i(x_{ci})\\ &=\frac 1z\prod_{i=1}^K e^{-E(x_{ci})}\\ &=\frac 1z e^{-\sum_{i = 1}^{K} E(x_{ci})} \end{aligned}
一般取ψ为指数函数,即可保证大于0ψi(xci)=exp{−E(xci)}P(x)=z1i=1∏Kψi(xci)=z1i=1∏Ke−E(xci)=z1e−∑i=1KE(xci)
其中E是能量函数(Energy function),能量越大越不稳定,就有从该状态变为稳定状态(能量低的状态)的趋势。
二、限制性玻尔兹曼机
对玻尔兹曼机进行了简化,hidden 节点与 visible 节点之间有连接,但是 hidden 节点与 hidden 节点之间,以及 visible 与 visible 节点之间没有连接。