限制性玻尔兹曼机(Restricted Bottzmann Machine,RBM)

背景介绍

一、玻尔兹曼机

玻尔兹曼机简单地说就是一个马尔科夫随机场(Markov Random Field),即一个无向图模型。但是玻尔兹曼机比无向图模型还是多了一些东西,就是玻尔兹曼机将其中的节点分为两类,一类是 hidden nodes,另一类是 visible nodes。
在这里插入图片描述
如上图所示,就是一个玻尔兹曼机,其中蓝色的是 hidden nodes,白色的是 visible nodes。
对于一个无向图模型来说,最重要的就是因子分解(Hammersley Clifferd Theorem):(基于最大团的概念)
P ( x ) = 1 z ∏ i = 1 K ψ i ( x c i ) s . t . ψ > 0 K 表 示 最 大 团 的 个 数 c i 表 示 最 大 团 x c i 表 示 最 大 团 对 应 的 随 机 变 量 集 合 ψ i ( x c i ) 是 势 函 数 z 是 归 一 化 因 子 P(x) = \frac 1z\prod _{i = 1}^{K} \psi_i(x_{ci})\\ s.t. \quad \psi>0 \\ K表示最大团的个数\\ ci表示最大团\\ x_{ci}表示最大团对应的随机变量集合\\ \psi_i(x_{ci})是势函数\\ z是归一化因子 P(x)=z1i=1Kψi(xci)s.t.ψ>0Kcixciψi(xci)z
一 般 取 ψ 为 指 数 函 数 , 即 可 保 证 大 于 0 ψ i ( x c i ) = e x p { − E ( x c i ) } P ( x ) = 1 z ∏ i = 1 K ψ i ( x c i ) = 1 z ∏ i = 1 K e − E ( x c i ) = 1 z e − ∑ i = 1 K E ( x c i ) 一般取\psi为指数函数,即可保证大于0 \\ \psi_i(x_{ci})=exp\{ -E(x_{ci}) \}\\ \begin{aligned} P(x) &= \frac 1z\prod _{i = 1}^{K} \psi_i(x_{ci})\\ &=\frac 1z\prod_{i=1}^K e^{-E(x_{ci})}\\ &=\frac 1z e^{-\sum_{i = 1}^{K} E(x_{ci})} \end{aligned} ψ0ψi(xci)=exp{E(xci)}P(x)=z1i=1Kψi(xci)=z1i=1KeE(xci)=z1ei=1KE(xci)
其中E是能量函数(Energy function),能量越大越不稳定,就有从该状态变为稳定状态(能量低的状态)的趋势。

二、限制性玻尔兹曼机

对玻尔兹曼机进行了简化,hidden 节点与 visible 节点之间有连接,但是 hidden 节点与 hidden 节点之间,以及 visible 与 visible 节点之间没有连接。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值