目录
一、auto框架介绍
本篇文章主要介绍一下阿里云天池金融数据分析赛题1:银行客户认购产品预测学习赛心得,对比利用亚马逊开源的automl框架 – autogluon,只需要几行代码就可以轻松实现数据预处理、模型融合、择优参数以及模型选择,与纯手动机器学习对赛题数据进行分析的优缺点。
以下是autogluon的代码:
autogluon文档:AutoGluon: AutoML for Text, Image, Time Series, and Tabular Data — AutoGluon Documentation
autogluon代码:GitHub - autogluon/autogluon: AutoGluon: AutoML for Image, Text, Time Series, and Tabular Data
AutoGluon利用可用的计算资源在其分配的运行时中找到最强大的模型。 需要Python 3.6或Python 3.7 的内核才能正常下载安装。
二、赛题背景:
赛题以银行产品认购预测为背景,想让你来预测下客户是否会购买银行的产品。在和客户沟通的过程中,我们记录了和客户联系的次数,上一次联系的时长,上一次联系的时间间隔,同时在银行系统中我们保存了客户的基本信息,包括:年龄、职业、婚姻、之前是否有违约、是否有房贷等信息,此外我们还统计了当前市场的情况:就业、消费信息、银行同业拆解率等。
三、赛题数据:
阿里云天池金融数据分析赛题1:银行客户认购产品预测
四、项目分析
(一)、利用autogluon对训练集进行自动分析
1、首先导入所需要的外部库
import numpy as np from autogluon.tabular
import TabularDataset,TabularPredict