金融数据分析赛题1:银行客户认购产品预测学习赛心得

本文分享了在阿里云天池金融数据分析赛中,利用AutoGluon自动机器学习框架与手动机器学习方法进行银行客户产品订阅预测的心得。AutoGluon只需几行代码即可完成数据处理、模型训练和预测,但评测成绩略低于手动方法。文章详细介绍了AutoGluon的工作原理和优缺点。
摘要由CSDN通过智能技术生成

目录

一、auto框架介绍

二、赛题背景:

三、赛题数据:

四、项目分析

(一)、利用autogluon对训练集进行自动分析

1、首先导入所需要的外部库

2、读取数据,并进行标注

3、输入到Tabular(集成学习库)进行训练

4、读取测试数据进行预测

5、最后保存预测结果

注:autogluon原理

(二)、纯手动机器学习方法

1、导入所需要的外部库

2、将从天池上下载的csv文件导入(此步忽略)

3、合并两个表

4、数据清洗

5、机器学习

(三)、心得总结

AutoGluon功能的优点:

AutoGluon功能的缺点:


一、auto框架介绍

        本篇文章主要介绍一下阿里云天池金融数据分析赛题1:银行客户认购产品预测学习赛心得,对比利用亚马逊开源的automl框架 – autogluon,只需要几行代码就可以轻松实现数据预处理、模型融合、择优参数以及模型选择,与纯手动机器学习对赛题数据进行分析的优缺点。

以下是autogluon的代码:

autogluon文档:AutoGluon: AutoML for Text, Image, Time Series, and Tabular Data — AutoGluon Documentation
autogluon代码:GitHub - autogluon/autogluon: AutoGluon: AutoML for Image, Text, Time Series, and Tabular Data

AutoGluon利用可用的计算资源在其分配的运行时中找到最强大的模型。 需要Python 3.6Python 3.7 的内核才能正常下载安装。

二、赛题背景:

        赛题以银行产品认购预测为背景,想让你来预测下客户是否会购买银行的产品。在和客户沟通的过程中,我们记录了和客户联系的次数,上一次联系的时长,上一次联系的时间间隔,同时在银行系统中我们保存了客户的基本信息,包括:年龄、职业、婚姻、之前是否有违约、是否有房贷等信息,此外我们还统计了当前市场的情况:就业、消费信息、银行同业拆解率等。

三、赛题数据:

        阿里云天池金融数据分析赛题1:银行客户认购产品预测


四、项目分析

(一)、利用autogluon对训练集进行自动分析

1、首先导入所需要的外部库

import numpy as np from autogluon.tabular

import TabularDataset,TabularPredict
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值