leetcode.1269. 停在原地的方案数---动态规划

1269. 停在原地的方案数

有一个长度为 arrLen 的数组,开始有一个指针在索引 0 处。

每一步操作中,你可以将指针向左或向右移动 1 步,或者停在原地(指针不能被移动到数组范围外)。

给你两个整数 steps 和 arrLen ,请你计算并返回:在恰好执行 steps 次操作以后,指针仍然指向索引 0 处的方案数。

由于答案可能会很大,请返回方案数 模 10^9 + 7 后的结果。

示例 1:

输入:steps = 3, arrLen = 2
输出:4
解释:3 步后,总共有 4 种不同的方法可以停在索引 0 处。
向右,向左,不动
不动,向右,向左
向右,不动,向左
不动,不动,不动
示例  2:

输入:steps = 2, arrLen = 4
输出:2
解释:2 步后,总共有 2 种不同的方法可以停在索引 0 处。
向右,向左
不动,不动
示例 3:

输入:steps = 4, arrLen = 2
输出:8
 

提示:

1 <= steps <= 500
1 <= arrLen <= 10^6

题解:

由于方案数量有很多,所以我们可以想到使用动态规划来求解类似的问题。

首先找准状态定义:
即由题可知,我们可以设 dp[i][j] 为走i步到达j下标的方法数量;

然后建立状态转移方程:
即首先每一次的dp[i][j] 初始应先等于 dp[i-1][j],这是因为当使用i-1步到达j下标时,对于i步时为少了一步,所以在dp[i][j]多了一步的情况下,由于可以保持执行步数时可以不移动,所以初始的dp[i][j]一定会先继承上dp[i-1][j],因为其一定能满足,即只要多的一步我们让这一步不移动即可;
然后继续对于dp[i][j]考虑,其也可能由dp[i-1][j-1] 与 dp[i-1][j+1] 向右向左走一步得到,由于这一步是确定的,因此根据越界与否来判断是否要加上二者的方法数量即可。

最后确定边界:
即首先dp[0][0] = 1 , 且dp[0][i] 全为0.

注意dp[i][j] 只能由 i-1的步数得到,其不能由 i步数的得到,因为我们每次求的正是i步数自己。

代码(Java):

class Solution {
    public int numWays(int steps, int arrLen) {
        final int Big = 1000000007;
        int len = Math.min(arrLen-1,steps);
        int[][] dp = new int[steps+1][len+1];
        dp[0][0] = 1;
        
        for(int i=1;i<=steps;i++)
        {
            for(int j=0;j<=len;j++)
            {
                dp[i][j] = dp[i-1][j];
                if(j-1>=0)
                {
                    dp[i][j] = (dp[i][j] + dp[i-1][j-1])%Big;
                }
                if(j+1<=len)
                {
                    dp[i][j] = (dp[i][j] + dp[i-1][j+1])%Big;
                }
            }
        }
        return dp[steps][0];
    }
}

代码(C):

const int Big = 1000000007;

int numWays(int steps, int arrLen){
    int length = fmin(arrLen-1,steps);
    int dp[steps+1][length+1];
    memset(dp,0,sizeof(dp));
    dp[0][0] = 1;
    
    for(int i=1;i<=steps;i++)
    {
        for(int j=0;j<=length;j++)
        {
            dp[i][j] = dp[i-1][j];
            if(j-1>=0)
            {
                dp[i][j] = (dp[i][j] + dp[i-1][j-1])%Big;
            }
            if(j+1<=length)
            {
                dp[i][j] = (dp[i][j] + dp[i-1][j+1])%Big;
            }
        }
    }
    return dp[steps][0];
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

向光.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值