1269. 停在原地的方案数
有一个长度为 arrLen 的数组,开始有一个指针在索引 0 处。
每一步操作中,你可以将指针向左或向右移动 1 步,或者停在原地(指针不能被移动到数组范围外)。
给你两个整数 steps 和 arrLen ,请你计算并返回:在恰好执行 steps 次操作以后,指针仍然指向索引 0 处的方案数。
由于答案可能会很大,请返回方案数 模 10^9 + 7 后的结果。
示例 1:
输入:steps = 3, arrLen = 2
输出:4
解释:3 步后,总共有 4 种不同的方法可以停在索引 0 处。
向右,向左,不动
不动,向右,向左
向右,不动,向左
不动,不动,不动
示例 2:
输入:steps = 2, arrLen = 4
输出:2
解释:2 步后,总共有 2 种不同的方法可以停在索引 0 处。
向右,向左
不动,不动
示例 3:
输入:steps = 4, arrLen = 2
输出:8
提示:
1 <= steps <= 500
1 <= arrLen <= 10^6
题解:
由于方案数量有很多,所以我们可以想到使用动态规划来求解类似的问题。
首先找准状态定义:
即由题可知,我们可以设 dp[i][j] 为走i步到达j下标的方法数量;
然后建立状态转移方程:
即首先每一次的dp[i][j] 初始应先等于 dp[i-1][j],这是因为当使用i-1步到达j下标时,对于i步时为少了一步,所以在dp[i][j]多了一步的情况下,由于可以保持执行步数时可以不移动,所以初始的dp[i][j]一定会先继承上dp[i-1][j],因为其一定能满足,即只要多的一步我们让这一步不移动即可;
然后继续对于dp[i][j]考虑,其也可能由dp[i-1][j-1] 与 dp[i-1][j+1] 向右向左走一步得到,由于这一步是确定的,因此根据越界与否来判断是否要加上二者的方法数量即可。
最后确定边界:
即首先dp[0][0] = 1 , 且dp[0][i] 全为0.
注意dp[i][j] 只能由 i-1的步数得到,其不能由 i步数的得到,因为我们每次求的正是i步数自己。
代码(Java):
class Solution {
public int numWays(int steps, int arrLen) {
final int Big = 1000000007;
int len = Math.min(arrLen-1,steps);
int[][] dp = new int[steps+1][len+1];
dp[0][0] = 1;
for(int i=1;i<=steps;i++)
{
for(int j=0;j<=len;j++)
{
dp[i][j] = dp[i-1][j];
if(j-1>=0)
{
dp[i][j] = (dp[i][j] + dp[i-1][j-1])%Big;
}
if(j+1<=len)
{
dp[i][j] = (dp[i][j] + dp[i-1][j+1])%Big;
}
}
}
return dp[steps][0];
}
}
代码(C):
const int Big = 1000000007;
int numWays(int steps, int arrLen){
int length = fmin(arrLen-1,steps);
int dp[steps+1][length+1];
memset(dp,0,sizeof(dp));
dp[0][0] = 1;
for(int i=1;i<=steps;i++)
{
for(int j=0;j<=length;j++)
{
dp[i][j] = dp[i-1][j];
if(j-1>=0)
{
dp[i][j] = (dp[i][j] + dp[i-1][j-1])%Big;
}
if(j+1<=length)
{
dp[i][j] = (dp[i][j] + dp[i-1][j+1])%Big;
}
}
}
return dp[steps][0];
}