SVM→2.决策函数的引出

SVM→2.决策函数的引出

《SVM→2.决策函数的引出》


  1. 优化目标:最长街宽,所以我们假设决策边界如下图所示 这样才能是最长街宽
paste-146325240807427.jpg
  1. 对于正样本来说,paste-40853728919555.jpg
    1. paste-138027363991555.jpg:决策边界的法向量 注意:paste-62719407423491.jpg不一定是单位向量
    2. 确保b为负数,如果是x1+x2-2=0,那么b=-2;如果x1+x2+2=0,可将方程变换-x1-x2-2=0,那么b=-2
    3. paste-61697205207043.jpg:原点O到决策边界的距离  首先有上一条
    4. paste-63307817943043.jpg:向量paste-143975893696515.jpg在向量paste-141605071749123.jpg上的投影,如果paste-103852309217283.jpg>paste-104934640975875.jpg,记为正样本 正样本在超平面的正向侧,超平面法向量指向的那一半空间是它的正向
    5. 图示
      paste-124124554854403%20(1).jpgpaste-125211181580291.jpgpaste-126293513338883.jpg
      1. 比较paste-131726646968323.jpg
      1. 比较paste-132817568661507.jpg
      1. 比较paste-133899900420099.jpg
  1. 决策函数:对于一个新样本,如果满足2.式,就预测为正样本,若paste-147519241715715.jpg,预测为负样本





posted on 2018-10-08 08:18 LeisureZhao 阅读(...) 评论(...) 编辑 收藏

没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试