10334 - Ray Through Glasses

题意: 三根线,一条光线在三个面上可以反射,透射,问n次反射后有多少种路径


题解: 我把反射面从上到下分成1,2,3,光线分成两种,一种是光线的最后一次反射的反射面是1与3,一种 是最后一次的反射面是2,当n为0时,第一种光线有1种,第二种有0种;当n为1时,n等于0时的第一种 光线分成数量相同的两种光线,以此类推用b[n],a[n]表示反射次数为n时第一种,第二种光线的数 目,递推公式:
a[n] = b[n - 1], b[n] = a[n - 1] + b[n - 1]

题目的答案就是a[n] + b[n],其实就是b[n + 1],大数方面用的是按位储存大数,模拟计算的方法

#include <cstdio>
#include <cstdlib>
#include <cstring>      
using namespace std; 
const int N = 1010;

int a[N][N], b[N][N];

int main(int argc, char const *argv[])
{
    memset(a, 0, sizeof(a));
    memset(b, 0, sizeof(b));
    b[0][0] = 1;
    for(int i = 1; i <= 1005; ++i) {
        for(int j = 0; j <= 1000; ++j) a[i][j] = b[i - 1][j];
        for(int j = 0; j <= 1000; ++j) b[i][j] = a[i - 1][j] + b[i - 1][j];
        for(int j = 0; j <= 1000; ++j) {
            b[i][j + 1] += b[i][j] / 10;
            b[i][j] %= 10;
        }
    }
    int n;
    while(~scanf("%d", &n)) {
        int i = 1001;
        while(b[n + 1][i] == 0) --i;
        while(i >= 0) printf("%d", b[n + 1][i--]);
        puts("");
    }
    
    return 0;
}




阅读更多
个人分类: UVa
上一篇10862 - Connect the Cable Wires
下一篇uvalive 3308 - Computer Transformation
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭