RAG 实践指南:使用Ollama与RagFlow构建本地知识库

前言

上一篇文章我们介绍了如何利用 Ollama+AnythingLLM 来实践 RAG ,在本地部署一个知识库。借助大模型和 RAG 技术让我可以与本地私有的知识库文件实现自然语言的交互。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

本文我们介绍另一种实现方式:利用 Ollama+RagFlow 来实现,其中 Ollama 中使用的模型仍然是Qwen2

我们再来回顾一下 RAG 常见的应用架构

RagFlow的安装和部署

前置条件
  • CPU >= 4 核
  • RAM >= 16 GB
  • Disk >= 50 GB
  • Docker >= 24.0.0 & Docker Compose >= v2.26.1
安装

克隆仓库

$ git clone https://github.com/infiniflow/ragflow.git


进入 docker 文件夹,利用提前编译好的 Docker 镜像启动服务器:

$ cd ragflow/docker
$ chmod +x ./entrypoint.sh
$ docker compose -f docker-compose-CN.yml up -d


这一步注意docker 下载的镜像比较大,要留有足够的存储空间,我这边观察下载了约 10 个 G 左右。

服务器启动成功后再次确认服务器状态:

$ docker logs -f ragflow-server


这里注意,安装完成后并不是要进入 下面两个地址

而是要进入:http://localhost:80 先注册账号,是下面这个页面

注册登录

在上图的界面中注册,然后登录就来到下面这个页面了

配置 Ollama 连接大模型

如下图我们先配置模型,点击右上角头像,再点击模型提供商

这里我是想连接我本地已经安装部署好的 Ollama ,通过 Ollama 我安装了 Qwen2 大模型,具体的安装步骤在之前的那篇文章里,有需要的可以移步到那里看。

打开Ollama 后, 我是通过服务器模式启动的大模型

ollama serve


当然你也可以选择其他平台和其他模型,需要提供 API key,API key 的获取就去你所选模型的网站,现在有很多模型的 API 是有免费额度的。

接着我们在 RagFlow 中配置模型,注意由于 RagFlow 我是在 docker 中安装的,所以请求本地部署的 Ollama 地址要用 :host.docker.internal:11434

创建知识库

接下来我们就可以创建知识库了

注意这里的文件类型没有 markdown,但我实测 markdown 是可以的。其他的选项,根据你的情况自行设置就好,很简单。

接下来就是上传你的文件了,也比较简单,但我发现上传后文件处理的比较慢,应该是我电脑配置的原因

文件上传并处理完成后,可以通过检索测试看一下文件有没有被正确检索。

至此,如果你上传完成全部的文件,知识库就算创建完毕了。

聊天

接着就到了展示成果的时候了,我们可以根据自己的知识库与模型进行自然语言交互了。

首先注意,在聊天配置中要把 token 设置的大一些,不然回复的内容会很少!我这里把它拉到最大值了。

展示一下成果:

我觉得还算满意。但是由于我笔记本配置一般,也没有显卡支持,所以跑的很慢,真的很慢。但如果部署在有 GPU 的服务器上,企业私有化部署供内部使用,应该会比较快的。

思考

我这里的例子是用个人笔记本电脑上的资料做的个人知识库,对于文档的提问,无论是围绕着摘要总结来做,还是围绕着全文检索,答案看起来还行,也基本能用。但是这是面向个人的或者说面向 C 端 ,如果面向 B 端面向企业单靠向量检索就力不从心了,一来无法对精确信息召回,二来无法与企业内部信息系统集成(大量结构化数据)。所以必须在检索阶段引入多路召回和重排序,保证数据查询的准确度。

企业内部的数据包含各种格式,更复杂的还包含各类图表等,如果在没有理解这些语义的基础之上直接提供 RAG 方案,例如简单的根据文字空白就来切分段落,就会导致语义丢失从而让最终查询的结果也是混乱不堪。

如果解决这个问题呢,除了之前说的多路召回(多跳)和重排序这种方案,目前业界还有其他思路,比如 infiniFlow提出的 Infinity AI原生数据库

从上图可以看到,AI原生数据库 不仅涵盖非结构化的内容如文档和图片,也包括结构化的信息系统。对这些信息进行有效整合,并在此基础上实现多路召回机制和最终的融合排序解决方案。

此外,很多AI 产品的上下文现在是越来越长,可能有人会说现在上下文都这么长了,还用得着 RAG 吗?我认为,RAG在知识库问答场景依然是非常必要的。LLM 的长上下文能力,对于 RAG 来说应该是很大的促进。用 OpenAI 联创 Andrej Karpathy 的一张图做个类比,他把 LLM 比喻为一台计算机的 CPU, 把上下文类比为计算机的内存,那么以向量为代表的数据库,就可以看作是这台计算机的硬盘

显然你不可能买一台只有内存的电脑。内存可以很大,但也意味着很贵,并且短时间内替代不了硬盘的作用。

最后是准确性问题,关于这个问题一般有两个方向的解决思路,一种是从 RAG 下手,比如做 Embedding 模型的微调。一种是从 LLM 下手,做 LLM 微调。虽然两种我都没真正做过,但从研读的资料上得知RAG系统在实时性和成本方面相较于LLM微调具有优势,因此更受青睐。这点跟我的直觉一致。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
在这里插入图片描述

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 关于 Deepseek、OllamaRagflow本地部署实施方案 #### Deepseek 本地部署概述 Deepseek 是一款专注于自然语言处理的知识库解决方案,支持高效的文档管理和语义搜索功能。对于希望构建私有知识管理系统的用户来说,Deepseek 提供了一套完整的工具链来帮助完成从数据采集到索引建立再到最终查询服务的一系列操作[^1]。 为了在本地环境中安装和配置 Deepseek: 1. **环境准备** - 安装 Docker 及其相关组件。 - 配置必要的网络设置以便容器间通信顺畅。 2. **拉取镜像初始化数据库** 使用官方提供的命令下载最新版本的应用程序包,并按照指引创建初始结构化的存储空间用于保存后续导入的数据集。 3. **加载预训练模型** 根据具体应用场景选择合适的机器学习算法框架作为后台支撑力量,在此基础上加载已经过优化调整过的参数文件以加速新项目的开发周期。 4. **集成第三方API接口** 如果项目中有涉及到外部资源调用的需求,则可通过 RESTful 或 GraphQL 协议轻松对接各类公共服务平台所提供的 API 接口,从而扩展应用的功能边界。 5. **测试验证环节** 利用内置的压力测试工具模拟真实世界的并发访问情况,确保整个系统能够在高负载条件下稳定运行;同时也要注意定期备份重要资料以防意外丢失。 ```bash docker pull deepseek/latest docker run --name=deepseek-db -e POSTGRES_USER=user -e POSTGRES_PASSWORD=password -d postgres:latest ``` #### Ollama 本地部署指南 Ollama 致力于为企业提供一站式的AI驱动型知识管理系统,具备良好的可移植性和灵活性特点。通过简单的几行脚本即可快速搭建起一套基于云原生架构设计的服务集群,满足不同规模企业内部协作交流过程中所产生的多样化诉求。 针对想要自行托管实例的情况而言: - 下载适用于目标操作系统类型的二进制执行文件; - 修改默认配置项中的监听地址端口号等基本信息; - 启动主进程之前先检查依赖关系是否齐全; - 访问浏览器输入指定URL路径查看图形界面版控制面板; - 导入样例工程熟悉基本的操作流程之后再逐步引入实际生产环境里的素材内容进行加工整理。 ```jsonnet { "api": { "listen_addr": ":8080", "max_body_size_mb": 10, ... }, } ``` #### Ragflow 本地部署说明 Ragflow 特别适合那些寻求高级定制选项和技术深度的企业级客户群组,拥有出色的 RAG 引擎及工作流编排能力,可以应对更为复杂多变的任务场景要求[^2]。下面是一份简化后的部署手册摘要: ##### 准备阶段 - 确认硬件设施达标(CPU/GPU内存容量充足) - 获取授权许可密钥激活产品特性权限 - 设置 GitLab CI/CD 流水线自动化持续交付管道 ##### 执行步骤 - 构建基础镜像并推送至私有的 Harbor 私服仓库内待命 - 编写 Helm Chart 文件定义好各微服务之间的关联映射关系图谱 - 应用 YAML 清单描述符启动 K8S Pod 实例集合体形成分布式计算网格布局 - 登录 Web 控制台页面校验各项指标数值是否正常无误 ```shell helm install my-release ./ragflow-chart \ --set image.repository=my.harbor.repo/ragnaroek/ragflow-server \ --set image.tag=v1.0.0 \ -f values.yaml ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员二飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值