如何搭建个人AI知识库?
前排提示,文末有大模型AGI-CSDN独家资料包哦!
分享一下我的整体思路。我觉得方法都是次要的,因为每个人的需求、情况都不同——唯有思路可以借鉴。
出发点和对应解法:
第一,信息过载,无法逐一细细消化。所以需要AI辅助,通过总结、提炼等方式帮助我们先快速、大致掌握。
第二,人脑不适合用来记东西,而应该用来做创造性的工作。所以需要“第二大脑 / Second Brain”来存储,需要AI根据语义进行检索(所有工具都有关键词检索,再加上语义检索就齐全了)。
第三,记笔记是对信息做预处理。记笔记的目的,是增援未来的自己。所以需要把信息层层筛选,最后挑选出来的、值得记下来的内容,用自己的话来记,而非复制别人的表述。
基于上面这三点,我设计了两套子系统,就像我在视频里介绍的:
外部信息处理。以AnythingLLM + 大模型为核心。
就像屠宰场一样,我把日常看到的、觉得有价值的信息都放到AnythingLLM里,用大模型这把“刀”,对所有信息作“肢解”,让我明白它们的“全身构造”,以及有哪些“部位”是有价值的。
这些有价值的内容,我会手动放到笔记里去——这一步只能自己来,因为如果没过自己的脑子、没亲手敲字的话,就一定不会成为自己的东西。
当然,针对特定信息,我还会用一些别的工具。比如AI相关的论文,我肯定会用txyz.ai来处理,这个网站 / 工具很专业,非常适合。
笔记生成。以Obsidian + 各种插件为核心。
就像视频里说的那样,我按照PAFP的逻辑建了四个文件夹,然后在里头建子文件夹,放对应的笔记。
Obsidian对笔记之间的逻辑关联做得很好。文件夹是一个关联逻辑。每条笔记还可以打上标签,这样一来,就可以跨过文件夹再去建立一个关联逻辑。更牛逼的是,一条笔记还可以链接到另一条笔记,这又是一种知识图谱的关联逻辑。通过这三层关联,我们就可以把笔记系统性地整理起来,变成一张网,而非一个个的散点。
在网的基础上,我们无论是查询还是搜索,都会有效得多。
我就是按照以上思路和方法,持续地把外部信息源源不断转化成我自己的东西。这种逐渐积累、内化的感觉,是非常让人欣喜的。
Ollama和LM Studio有哪些区别?
Ollama和LM Studio都属于在本地运行开源大模型的工具。直观上的区别在于,Ollama通过命令,LM Studio通过图形化界面。因此对新手来说,LM Studio会更亲切、更容易上手。
在后端把大模型跑起来还不够,还需要有前端的交互界面。
LM Studio在这方面做得很好。就像我在视频里说的那样,它的集成度非常高,从模型搜索和下载,到加载和对话,全都打包在一起了。
而Ollama是在终端里进行对话的,看起来特别简陋,于是有了Open WebUI这样的项目,给Ollama一个更加现代化的界面,类似ChatGPT的外观。不仅如此,Open WebUI还自带RAG,可以用它搭建知识库,以及具有账号管理的功能,方便多人使用。
上边介绍的,都属于Ollama和LM Studio的【客户端】模式。它俩还有【服务器】模式。简单来说就是,只是充当大模型在本地运行的工具/容器,然后打开一个通道/端口,给到其它应用。就像发电机一样,接了条电线出来,给到各种电器使用。
如何提升AnythingLLM精确度?
理解RAG的原理、流程,才好做优化,不管是自己手搓还是用现成工具。
RAG = 文档预处理 + Query理解 + 文档检索 + LLM生成
如果是用AnythingLLM之类的现成工具,在设置方面有几点要注意:
第一,嵌入模型的语言支持。比如,资料中英文都有的话,可以用Cohere Embed v3 - Multilingual,支持多语种。
第二,嵌入模型的Context Window。比如,Cohere Embed v3 - Multilingual是512 tokens。用Ollama、LM Studio的话,我记得会要求填写Max embedding chunk length,注意别瞎填。
第三,文本切块的尺寸(Chunk Size)和重叠(Overlap)。
尺寸要考虑两点:一是别超过嵌入模型的上限;二是资料的类型。如果资料都是一些短句、片段,比如单条的简短笔记,那么尺寸小一些可以避免一个切块中包含太多条不相干的内容,干扰大模型的理解。如果资料是成篇的文章,有比较强的连贯逻辑,尺寸就尽量大一些,否则把一个连贯段落切开就牛头不对马嘴了。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓