懂数据分析的人前途大好,但不建议奔着数据分析师去。
先说为什么不建议奔着数据分析师去。
最近几年数据分析的风很大,它的编程技术要求比程序员低,在大数据时代又被各行各业需求,显得又好入门,又好就业,被很多人视为转行的救命稻草。其实也没有错,只要能力足够,无论是中专、天坑专业还是转行都可以进入这个领域。
但前提是能力足够。
很多人是被岗位名称骗了,以为只要懂得收集数据和制作图表,最多再加个数据变化描述,就能入行,但其实这样你只能做一个工具人,被业务部门和决策者利用,随时可以一脚踢开,而且说不准什么时候就会被更智能的程序替代。
如果想成为不可替代的人,就只有两条路:
- 业务方向:成为懂数据分析的运营/销售/产品……通过数据分析做出更科学的业务策略和决策。
- 技术方向:成为数据挖掘工程师,在技术的道路上成为大佬。
那些高薪招聘高级数据分析师的公司,实际上要求的也是求职者能提出具体的业务改进建议,此时这个岗位的工作也就担负了运营/销售/产品等职位的职能。
也就是说,想要在业务方向发展,商业洞察能力和决策能力更重要;想要在技术方向发展,数据分析里简单的IT技术就会不够用。
所以不要被数据分析师里的“数据分析”骗了,如果你只学了数据分析就兴冲冲的离开老本行,大概率会求职碰壁,就算成功转行,也需要花更大力气去学习新行业的业务知识,一旦跟不上,就可能被淘汰。
懂数据分析的人很有前途。
数据分析的正确打开姿势,应该是把它作为自己的拓展技能,用数据分析延展自己的职业道路,
这里的懂数据分析也不只是懂技术,而且纯粹的数据技术大佬还是少的,大多数人都是要用数据分析做业务的辅助,这意味着你要把数据分析用的很灵活,才能应对多变的实际业务的场景。所以基础也就格外重要,如果打不好基础,你就无法在实际应用中随心所欲的拆分和结合数据分析各部分要素。
- 这需要你懂得统计学和概率论;
- 需要你掌握各种分析法,比如对比分析法、AARRR分析法、5w分析法等;
- 还需要你对一个行业的业务发展上下游都有了解,能判断各一个数据的变动是对应哪个环节……
对于初学者,我的建议是跟着老师学习,最好是同时有长期教课经验和牛逼工作经验的老师,保证他确实是一个实战数据分析大佬,又确实能教会别人,两者缺一,要不然就是把你教成书呆子,要不就是大肚茶壶倒饺子——有货说不出。
说到底,数据分析本身也很难长期作为岗位存在,它正在成为一种职场必备技能,哪怕财务、人力、行政这样的后台岗位,也需要用数据分析效提高工作效率。
所以要说数据分析岗位的前景如何,我只能说,是你职业发展的绝对加分项,但不是你应该但职业方向。
最后给大家提一点就业的建议:
1、如果你还是学生:
那你很幸运,可以从0开始进入一个喜欢的行业,数据分析能力会使得你在一众应届生里更突出,更受青睐,企业也会允许你用较长时间学习业务知识。但你要注意,数据分析能力可以作为敲门砖,却不能支撑你长期发展,你必须抓紧时间在业务,越早介入到策略和决策过程,你才能越站稳脚跟。
2、如果你已经在职:
在本行业继续发展或许是更好的选择,反正即使是传统行业,也需要数据分析师,像我之前贴的图里,超市都在招聘数据分析师。
这样你可以省去很多重头学习业务的时间,要知道企业对于有工作经验的人要求是快速上手,这种情况你要不就是学的不够快被淘汰,要不就是没时间学习导致一直从事做图表的工作,没有发展,也迟早被淘汰。
关于Python技术储备
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
三、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
五、Python练习题
检查学习结果。
六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
最后祝大家天天进步!!
上面这份完整版的Python全套学习资料已经上传至CSDN官方,朋友如果需要可以直接微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】。