最小生成树(prime算法)裸题

复习了一遍。

输入

每个测试点(输入文件)有且仅有一组测试数据。

在一组测试数据中:

第1行为1个整数N,表示小Hi拥有的城市数量。

接下来的N行,为一个N*N的矩阵A,描述任意两座城市之间建造道路所需要的费用,其中第i行第j个数为Aij,表示第i座城市和第j座城市之间建造道路所需要的费用。

对于100%的数据,满足N<=10^3,对于任意i,满足Aii=0,对于任意i, j满足Aij=Aji, 0<Aij<10^4.

输出

对于每组测试数据,输出1个整数Ans,表示为了使任意两座城市都可以通过所建造的道路互相到达至少需要的建造费用。

样例输入
5
0 1005 6963 392 1182 
1005 0 1599 4213 1451 
6963 1599 0 9780 2789 
392 4213 9780 0 5236 
1182 1451 2789 5236 0 
样例输出

4178

代码:

#include<iostream>
#include<string.h>
#include<stdio.h>
using namespace std;
const int maxn=1500;
int d[maxn];//搜到当前点的最小距离
int g[maxn][maxn];
int vis[maxn];
int N;

int prime()
{
    int ans=0;
    int k;
    d[0]=10000000;
    for(int i=1;i<=N;i++)
    {
        d[i]=g[1][i];
    }
    vis[1]=1;
    for(int i=1;i<N;i++)
    {
        k=0;
        for(int j=2;j<=N;j++)
        {
            if(!vis[j]&&d[j]<d[k])
                k=j;
        }
        vis[k]=1;
        ans+=d[k];
        for(int j=2;j<=N;j++)
        {
            if(!vis[j]&&g[k][j]<d[j])
                d[j]=g[k][j];
        }
    }
    return ans;
}
int main()
{
    memset(vis,0,sizeof(vis));
    scanf("%d",&N);
    for(int i=1;i<=N;i++)
    {
        for(int j=1;j<=N;j++)
        {
            cin>>g[i][j];
        }
    }
    cout<<prime()<<endl;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值