一个无向连通网络,去掉一个边集可以使其变成两个连通分量则这个边集就是割集;最小割集当然就权和最小的割集。
可以用最小切割最大流定理:
1.min=MAXINT,确定一个源点
2.枚举汇点
3.计算最大流,并确定当前源汇的最小割集,若比min小更新min
4.转到2直到枚举完毕
5.min即为所求输出min
不难看出复杂度很高:枚举汇点要O(n),最短增广路最大流算法求最大流是O((n^2)m)复杂度,在复杂网络中O(m)=O(n^2),算法总复杂度 就是O(n^5);哪怕采用最高标号预进流算法求最大流O((n^2)(m^0.5)),算法总复杂度也要O(n^4)
所以用网络流算法求解最小割集复杂度不会低于O(n^4)。
---------
prim算法不仅仅可以求最小生成树,也可以求“最大生成树”。最小割集Stoer-Wagner算法就是典型的应用实例。
求解最小割集普遍采用Stoer-Wagner算法,不提供此算法证明和代码,只提供算法思路:
1.min=MAXINT,固定一个顶点P
2.从点P用类似prim的s算法扩展出“最大生成树”,记录最后扩展的顶点和最后扩展的边
3.计算最后扩展到的顶点的切割值(即与此顶点相连的所有边权和),若比min小更新min
4.合并最后扩展的那条边的两个端点为一个顶点(当然他们的边也要合并,这个好理解吧?)
5.转到2,合并N-1次后结束
6.min即为所求,输
可以用最小切割最大流定理:
1.min=MAXINT,确定一个源点
2.枚举汇点
3.计算最大流,并确定当前源汇的最小割集,若比min小更新min
4.转到2直到枚举完毕
5.min即为所求输出min
不难看出复杂度很高:枚举汇点要O(n),最短增广路最大流算法求最大流是O((n^2)m)复杂度,在复杂网络中O(m)=O(n^2),算法总复杂度 就是O(n^5);哪怕采用最高标号预进流算法求最大流O((n^2)(m^0.5)),算法总复杂度也要O(n^4)
所以用网络流算法求解最小割集复杂度不会低于O(n^4)。
---------
prim算法不仅仅可以求最小生成树,也可以求“最大生成树”。最小割集Stoer-Wagner算法就是典型的应用实例。
求解最小割集普遍采用Stoer-Wagner算法,不提供此算法证明和代码,只提供算法思路:
1.min=MAXINT,固定一个顶点P
2.从点P用类似prim的s算法扩展出“最大生成树”,记录最后扩展的顶点和最后扩展的边
3.计算最后扩展到的顶点的切割值(即与此顶点相连的所有边权和),若比min小更新min
4.合并最后扩展的那条边的两个端点为一个顶点(当然他们的边也要合并,这个好理解吧?)
5.转到2,合并N-1次后结束
6.min即为所求,输