
Tensorflow
文章平均质量分 81
XianxinMao
可提供咨询,欢迎私信交流
展开
-
Introducing TensorFlow Graph Neural Networks
Introducing_TensorFlow_Graph_Neural_NetworksToday, we are excited to release TensorFlow Graph Neural Networks (GNNs), a library designed to make it easy to work with graph structured data using TensorFlow.Graphs are all around us, in the real world and i原创 2021-11-19 21:57:42 · 1109 阅读 · 0 评论 -
Basic regression: Predict fuel efficiency ------ TensorFlow
Basic_regression_Predict_fuel_efficiencyIn a regression problem, the aim is to predict the output of a continuous value, like a price or a probability. Contrast this with a classification problem, where the aim is to select a class from a list of classes原创 2021-11-18 14:03:24 · 1222 阅读 · 0 评论 -
Tensorflow Similarity Supervised Learning Hello World
Tensorflow_Similarity_Supervised_Learning_Hello_WorldThis notebook demonstrates how to use TensorFlow Similarity to train a SimilarityModel() on a fraction of the MNIST classes, and yet the model is able to index and retrieve similar looking images for al原创 2021-11-15 21:08:17 · 1466 阅读 · 0 评论 -
Introducing TensorFlow Similarity
tensorflow_similarityToday we are releasing the first version of TensorFlow Similarity, a python package designed to make it easy and fast to train similarity models using TensorFlow.Examples of nearest neighbor searches performed on the embeddings gene原创 2021-11-15 11:29:10 · 1399 阅读 · 0 评论 -
Basic text classification ------ TensorFlow
text_classification文本分类对 IMDB 数据集里的评论进行情感分析,其实就是分为正面和负面两类评论对 Stack Overflow 上的编程问题进行打标签This tutorial demonstrates text classification starting from plain text files stored on disk. You’ll train a binary classifier to perform sentiment analysis on an IM原创 2021-11-13 15:54:09 · 1027 阅读 · 0 评论 -
Load CSV data ----- TensorFlow
我们这里处理的是 CSV 数据There are two main parts to this:Loading the data off diskPre-processing it into a form suitable for training.This tutorial focuses on the loading, and gives some quick examples of preprocessing. For a tutorial that focuses on the prep原创 2021-11-11 15:31:44 · 984 阅读 · 0 评论 -
Basic classification: Classify images of clothing
1.数据读取,然后对数据进行预处理,把 x 转化成 float-point,y 还是保留 label 形式2.搭建模型,要指定输入的 input_shape3.compile 里面要指定 optimizer,loss_function,metric4.对模型进行评估,预测的输出要经过 softmax 得到 probability 形式的表示唯一有特点的地方是对预测的输出做了可视化处理This guide uses the Fashion MNIST dataset which contains 7原创 2021-11-10 21:30:55 · 467 阅读 · 0 评论 -
TensorFlow 2 quickstart for beginners
import tensorflow as tfprint("TensorFlow version:", tf.__version__)mnist = tf.keras.datasets.mnist(x_train, y_train), (x_test, y_test) = mnist.load_data()x_train, x_test = x_train / 255.0, x_test / 255.0model = tf.keras.models.Sequential([ tf.原创 2021-11-10 19:18:29 · 646 阅读 · 0 评论 -
Exploring the TF-Hub CORD-19 Swivel Embeddings
cord_19_embeddings_kerasThese embeddings were trained on the titles, authors, abstracts, body texts, and reference titles of articles in the CORD-19 datasetIn this colab we will:Analyze semantically similar words in the embedding spaceTrain a classifi原创 2021-11-04 20:46:02 · 321 阅读 · 0 评论 -
Bangla Article Classification With TF-Hub
bangla_article_classifierThis Colab is a demonstration of using TensorFlow Hub for text classification in non-English/local languages. Here we choose Bangla as the local language and use pretrained word embeddings to solve a multiclass classification task原创 2021-11-04 18:17:15 · 332 阅读 · 0 评论 -
How to solve a problem on Kaggle with TF-Hub
text_classification_with_tf_hub_on_kaggleTF-Hub is a platform to share machine learning expertise packaged in reusable resources, notably pre-trained modules. In this tutorial, we will use a TF-Hub text embedding module to train a simple sentiment classif原创 2021-11-04 10:46:05 · 181 阅读 · 0 评论 -
Universal Sentence Encoder ----- TF Hub
semantic_similarity_with_tf_hub_universal_encoderThis notebook illustrates how to access the Universal Sentence Encoder and use it for sentence similarity and sentence classification tasksThe Universal Sentence Encoder makes getting sentence level embedd原创 2021-11-03 21:24:51 · 491 阅读 · 0 评论 -
Solve GLUE tasks using BERT ----- TF Hub
bert_glueBERT can be used to solve many problems in natural language processing. You will learn how to fine-tune BERT for many tasks from the GLUE benchmark:CoLA (Corpus of Linguistic Acceptability): Is the sentence grammatically correct ?SST-2 (Stanfo原创 2021-11-03 21:13:33 · 298 阅读 · 0 评论 -
BERT Experts from TF-Hub
bert_expertsThis colab demonstrates how to:Load BERT models from TensorFlow Hub that have been trained on different tasks including MNLI, SQuAD, and PubMedUse a matching preprocessing model to tokenize raw text and convert it to idsGenerate the pooled原创 2021-11-01 20:13:52 · 183 阅读 · 0 评论 -
Multilingual Universal Sentence Encoder Q&A Retrieval ---- TF Hub
retrieval_with_tf_hub_universal_encoder_qaThis is a demo for using Universal Encoder Multilingual Q&A model for question-answer retrieval of text, illustrating the use of question_encoder and response_encoder of the model. We use sentences from SQuAD原创 2021-11-01 13:47:11 · 259 阅读 · 0 评论 -
Semantic Search with Approximate Nearest Neighbors and Text Embeddings ----- TF Hub
tf2_semantic_approximate_nearest_neighborsThis tutotial illustrates how to generate embeddings from a TensorFlow Hub (TF-Hub) module given input data, and build an approximate nearest neighbours (ANN) index using the extracted embeddings. The index can th原创 2021-11-01 11:34:28 · 200 阅读 · 0 评论 -
Classify text with BERT ---- TF Hub
classify_text_with_bertThis tutorial contains complete code to fine-tune BERT to perform sentiment analysis on a dataset of plain-text IMDB movie reviews. In addition to training a model, you will learn how to preprocess text into an appropriate format.I原创 2021-10-31 21:21:54 · 314 阅读 · 0 评论 -
Text Classification with Movie Reviews ----- TF Hub
tf2_text_classificationThis notebook classifies movie reviews as positive or negative using the text of the review. This is an example of binary or two-class-classification, an important and widely applicable kind of machine learning problemWe’ll use the原创 2021-10-30 23:44:25 · 205 阅读 · 0 评论 -
Image Super Resolution using ESRGAN ---- TF Hub
image_enhancingThis colab demonstrates use of TensorFlow Hub Module for Enhanced Super Resolution Generative Adversarial Network for image enhancingModel trained on DIV2K Dataset (on bicubically downsampled images) on image patches of size 128 x 128impo原创 2021-10-30 20:25:21 · 232 阅读 · 0 评论 -
Boundless Colab ---- TF Hub
boundlessBoundless is a model for image extrapolation. This model takes an image, internally masks a portion of it (1/2, 1/4, 3/4) and completes the masked part. For more details refer to Boundless: Generative Adversarial Networks for Image Extension or t原创 2021-10-30 19:49:17 · 188 阅读 · 0 评论 -
Fine tuning models for plant disease detection ----- TF Hub
cropnet_on_deviceThis notebook shows you how to fine-tune CropNet models from TensorFlow Hub on a dataset from TFDS or your own crop disease detection dataset.You will:Load the TFDS cassava dataset or your own dataEnrich the data with unknown (negativ原创 2021-10-29 21:30:56 · 257 阅读 · 0 评论 -
CropNet: Cassava Disease Detection ----- TF Hub
cropnet_cassavaThis notebook shows how to use the CropNet cassava disease classifier model from Tensorflow Hub. The model classifies images of cassava leaves into one of 6 classes: bacterial blight, brown streak disease, green mite, mosaic disease, health原创 2021-10-29 11:36:37 · 298 阅读 · 0 评论 -
Generate Artificial Faces with CelebA Progressive GAN Model ---- TF-Hub
tf_hub_generative_image_moduleThis Colab demonstrates use of a TF-Hub module based on a generative adversarial network (GAN). The module maps from N-dimensional vectors, called latent space, to RGB imagesTwo examples are provided:Mapping from latent sp原创 2021-10-28 19:08:08 · 196 阅读 · 0 评论 -
TensorFlow Hub Object Detection Colab | TF Hub
tf2_object_detectionTo visualize the images with the proper detected boxes, keypoints and segmentation, we will use the TensorFlow Object Detection APILoad label map data (for plotting):Label maps correspond index numbers to category names, so that when原创 2021-10-27 15:16:56 · 386 阅读 · 0 评论 -
Fast Style Transfer for Arbitrary Styles | TF Hub
tf2_arbitrary_image_stylizationBased on the model code in magenta and the publication:Exploring the structure of a real-time, arbitrary neural artistic stylization networkimport functoolsimport osimport timefrom matplotlib import gridspecimport matp原创 2021-10-26 21:08:49 · 353 阅读 · 0 评论 -
Retraining an Image Classifier | TF Hub
tf2_image_retrainingImage classification models have millions of parameters. Training them from scratch requires a lot of labeled training data and a lot of computing power. Transfer learning is a technique that shortcuts much of this by taking a piece of原创 2021-10-25 19:54:55 · 273 阅读 · 0 评论 -
image_classification| TF Hub
image_classificationBecause TF Hub encourages a consistent input convention for models that operate on images, it’s easy to experiment with different architectures to find the one that best fits your needsThere are some technical differences between the原创 2021-10-25 19:05:04 · 381 阅读 · 0 评论 -
Text-to-Video retrieval with S3D MIL-NCE | TF Hub
text_to_video_retrieval_with_s3d_milnceThis tutorial demonstrates how to use the S3D MIL-NCE model from Tensorflow Hub to do text-to-video retrieval to find the most similar videos for a given text query.The model has 2 signatures, one for generating vid原创 2021-10-25 14:31:49 · 744 阅读 · 0 评论 -
Video Inbetweening using 3D Convolutions | TF Hub
video_inbetweening_conv3dFrom Here to There: Video Inbetweening Using Direct 3D Convolutions, 2019Current Hub characteristics:has models for BAIR Robot pushing videos and KTH action video dataset (though this colab uses only BAIR)BAIR dataset already原创 2021-10-24 22:36:05 · 269 阅读 · 0 评论 -
Action Recognition with an Inflated 3D CNN | TF Hub
action_recognition_with_tf_hubrecognizing actions in video data using the tfhub.dev/deepmind/i3d-kinetics-400/1 moduleMore models to detect actions in videos can be found here解读: 用 tfhub.dev/deepmind/i3d-kinetics-400/1 模块去识别视频数据里的动作The underlying model原创 2021-10-24 20:23:09 · 207 阅读 · 0 评论 -
Tensorflow Lite Model Maker --- 姿态分类篇
tflite_pose_classificationThis notebook teaches you how to train a pose classification model using MoveNet and TensorFlow Lite. The result is a new TensorFlow Lite model that accepts the output from the MoveNet model as its input, and outputs a pose class原创 2021-10-11 18:59:48 · 1109 阅读 · 0 评论 -
Tensorflow Lite Model Maker --- 图像分类篇+源码
TFLite_tutorialsThe TensorFlow Lite Model Maker library simplifies the process of adapting and converting a TensorFlow neural-network model to particular input data when deploying this model for on-device ML applications.解读: 此处我们想要得到的是 .tflite 格式的模型,用于在移原创 2021-10-07 21:49:59 · 1283 阅读 · 5 评论 -
Tensorflow Lite 笔记(二)
tensorflow lite model makermetadata which provides a standard for model descriptionsThe default model is EfficientNet-Lite0.Currently, we support several models such as EfficientNet-Lite* models, MobileNetV2, ResNet50 as pre-trained models for image cla原创 2021-10-04 23:08:51 · 339 阅读 · 0 评论 -
简单的 OCR 识别验证码 Demo | Keras 实现
How to implement an OCR model using CNNs, RNNs, and CTC loss.This example demonstrates a simple OCR model built with the Functional API. Apart from combining CNN and RNN, it also illustrates how you can instantiate a new layer and use it as an “Endpoint l原创 2021-09-24 17:24:34 · 2788 阅读 · 1 评论 -
图像分类 - cifar100 实验研究
为了解决 cifar100 val_acc 过低的问题,本质上是过拟合问题,所以特地去 papers with code 网站上看了下 cifar100 benchmark 目前第一名做到了多少,如下图所示,val_cc = 0.96,有点东西哈,所以目前要做的是研究 SAM (Sharpness-Aware Minimization),主要用于提升模型的泛化性。我这里先把拿到的代码跑了下,不过数据集是 cifar10,val_acc = 0.97,我觉得还是很稳的,目前正在跑 cifar100,不过代原创 2021-09-22 09:58:59 · 1988 阅读 · 2 评论 -
flower_photos train analysis
补充思考:flower_photos 数据量比较小,所以 simple_cnn 可以在 trainset 上拟合到 0.99,意思就是数据复杂度 < 模型复杂度添加数据增强的本质是扩大模型见过的数据量想要模型泛化性好,只有一个关键因素,数据量如果让 simple_cnn 在 ImageNet 上做预训练,然后 flower_photos 上做训练,效果会更好吗?从模型的浅层、中层、深层提取到的不同层次抽象特征来看,MobileNet 等网络无疑更加符合这个划分,此处 simple_cnn 过原创 2021-09-22 09:56:44 · 272 阅读 · 0 评论 -
Convolutional Neural Network (CNN)
我自己写的代码和该教程略有不一样,有三处改动,第一个地方是用归一化(均值为0,方差为1)代替数值缩放([0, 1]),代替的理由是能提升准确率第二处改动是添加了正则化,在Conv2D和Dense Layer中均有添加,可以抑制模型过拟合,提升val_acc第三处改动是对模型训练五次进行acc取平均值,因为keras训练模型会有准确率波动,详细代码见文末链接This tutorial demonstrates training a simple Convolutional Neural Netwo原创 2021-08-01 18:24:35 · 329 阅读 · 0 评论 -
Introduction to the Keras Tuner
OverviewThe Keras Tuner is a library that helps you pick the optimal set of hyperparameters for your TensorFlow program. The process of selecting the right set of hyperparameters for your machine learning (ML) application is called hyperparameter tuning原创 2021-07-31 21:38:40 · 207 阅读 · 0 评论 -
Text classification with TensorFlow Hub: Movie reviews
This notebook classifies movie reviews as positive or negative using the text of the review. This is an example of binary—or two-class—classification, an important and widely applicable kind of machine learning problem.The tutorial demonstrates the basic原创 2021-07-31 19:53:06 · 257 阅读 · 0 评论 -
Tensorflow日常随笔(一)
TensorFlow is an end-to-end open source platform for machine learningTensorFlow makes it easy for beginners and experts to create machine learning models. See the sections below to get started.https://www.tensorflow.org/tutorialsTutorials show you原创 2021-07-31 16:38:07 · 162 阅读 · 0 评论