
神经网络与深度学习
文章平均质量分 75
XianxinMao
可提供咨询,欢迎私信交流
展开
-
Introducing TensorFlow Graph Neural Networks
Introducing_TensorFlow_Graph_Neural_NetworksToday, we are excited to release TensorFlow Graph Neural Networks (GNNs), a library designed to make it easy to work with graph structured data using TensorFlow.Graphs are all around us, in the real world and i原创 2021-11-19 21:57:42 · 1109 阅读 · 0 评论 -
Basic regression: Predict fuel efficiency ------ TensorFlow
Basic_regression_Predict_fuel_efficiencyIn a regression problem, the aim is to predict the output of a continuous value, like a price or a probability. Contrast this with a classification problem, where the aim is to select a class from a list of classes原创 2021-11-18 14:03:24 · 1222 阅读 · 0 评论 -
Tensorflow Similarity Supervised Learning Hello World
Tensorflow_Similarity_Supervised_Learning_Hello_WorldThis notebook demonstrates how to use TensorFlow Similarity to train a SimilarityModel() on a fraction of the MNIST classes, and yet the model is able to index and retrieve similar looking images for al原创 2021-11-15 21:08:17 · 1466 阅读 · 0 评论 -
Load CSV data ----- TensorFlow
我们这里处理的是 CSV 数据There are two main parts to this:Loading the data off diskPre-processing it into a form suitable for training.This tutorial focuses on the loading, and gives some quick examples of preprocessing. For a tutorial that focuses on the prep原创 2021-11-11 15:31:44 · 984 阅读 · 0 评论 -
Basic classification: Classify images of clothing
1.数据读取,然后对数据进行预处理,把 x 转化成 float-point,y 还是保留 label 形式2.搭建模型,要指定输入的 input_shape3.compile 里面要指定 optimizer,loss_function,metric4.对模型进行评估,预测的输出要经过 softmax 得到 probability 形式的表示唯一有特点的地方是对预测的输出做了可视化处理This guide uses the Fashion MNIST dataset which contains 7原创 2021-11-10 21:30:55 · 467 阅读 · 0 评论 -
TensorFlow 2 quickstart for beginners
import tensorflow as tfprint("TensorFlow version:", tf.__version__)mnist = tf.keras.datasets.mnist(x_train, y_train), (x_test, y_test) = mnist.load_data()x_train, x_test = x_train / 255.0, x_test / 255.0model = tf.keras.models.Sequential([ tf.原创 2021-11-10 19:18:29 · 646 阅读 · 0 评论 -
Pytorch----模型性能研究工具
Pytorchtorchstattorchstat: The Pytorch Model AnalyzerThis is a lightweight neural network analyzer based on Pytorch. It is designed to make building your networks quick and easy, with the ability to debug them.This tools can show:Total number of netw原创 2021-11-08 13:42:09 · 768 阅读 · 0 评论 -
Image Super Resolution using ESRGAN ---- TF Hub
image_enhancingThis colab demonstrates use of TensorFlow Hub Module for Enhanced Super Resolution Generative Adversarial Network for image enhancingModel trained on DIV2K Dataset (on bicubically downsampled images) on image patches of size 128 x 128impo原创 2021-10-30 20:25:21 · 232 阅读 · 0 评论 -
Boundless Colab ---- TF Hub
boundlessBoundless is a model for image extrapolation. This model takes an image, internally masks a portion of it (1/2, 1/4, 3/4) and completes the masked part. For more details refer to Boundless: Generative Adversarial Networks for Image Extension or t原创 2021-10-30 19:49:17 · 188 阅读 · 0 评论 -
Fine tuning models for plant disease detection ----- TF Hub
cropnet_on_deviceThis notebook shows you how to fine-tune CropNet models from TensorFlow Hub on a dataset from TFDS or your own crop disease detection dataset.You will:Load the TFDS cassava dataset or your own dataEnrich the data with unknown (negativ原创 2021-10-29 21:30:56 · 257 阅读 · 0 评论 -
CropNet: Cassava Disease Detection ----- TF Hub
cropnet_cassavaThis notebook shows how to use the CropNet cassava disease classifier model from Tensorflow Hub. The model classifies images of cassava leaves into one of 6 classes: bacterial blight, brown streak disease, green mite, mosaic disease, health原创 2021-10-29 11:36:37 · 298 阅读 · 0 评论 -
Generate Artificial Faces with CelebA Progressive GAN Model ---- TF-Hub
tf_hub_generative_image_moduleThis Colab demonstrates use of a TF-Hub module based on a generative adversarial network (GAN). The module maps from N-dimensional vectors, called latent space, to RGB imagesTwo examples are provided:Mapping from latent sp原创 2021-10-28 19:08:08 · 196 阅读 · 0 评论 -
TensorFlow Hub Object Detection Colab | TF Hub
tf2_object_detectionTo visualize the images with the proper detected boxes, keypoints and segmentation, we will use the TensorFlow Object Detection APILoad label map data (for plotting):Label maps correspond index numbers to category names, so that when原创 2021-10-27 15:16:56 · 386 阅读 · 0 评论 -
Fast Style Transfer for Arbitrary Styles | TF Hub
tf2_arbitrary_image_stylizationBased on the model code in magenta and the publication:Exploring the structure of a real-time, arbitrary neural artistic stylization networkimport functoolsimport osimport timefrom matplotlib import gridspecimport matp原创 2021-10-26 21:08:49 · 353 阅读 · 0 评论 -
Retraining an Image Classifier | TF Hub
tf2_image_retrainingImage classification models have millions of parameters. Training them from scratch requires a lot of labeled training data and a lot of computing power. Transfer learning is a technique that shortcuts much of this by taking a piece of原创 2021-10-25 19:54:55 · 273 阅读 · 0 评论 -
image_classification| TF Hub
image_classificationBecause TF Hub encourages a consistent input convention for models that operate on images, it’s easy to experiment with different architectures to find the one that best fits your needsThere are some technical differences between the原创 2021-10-25 19:05:04 · 381 阅读 · 0 评论 -
Text-to-Video retrieval with S3D MIL-NCE | TF Hub
text_to_video_retrieval_with_s3d_milnceThis tutorial demonstrates how to use the S3D MIL-NCE model from Tensorflow Hub to do text-to-video retrieval to find the most similar videos for a given text query.The model has 2 signatures, one for generating vid原创 2021-10-25 14:31:49 · 744 阅读 · 0 评论 -
Video Inbetweening using 3D Convolutions | TF Hub
video_inbetweening_conv3dFrom Here to There: Video Inbetweening Using Direct 3D Convolutions, 2019Current Hub characteristics:has models for BAIR Robot pushing videos and KTH action video dataset (though this colab uses only BAIR)BAIR dataset already原创 2021-10-24 22:36:05 · 269 阅读 · 0 评论 -
Action Recognition with an Inflated 3D CNN | TF Hub
action_recognition_with_tf_hubrecognizing actions in video data using the tfhub.dev/deepmind/i3d-kinetics-400/1 moduleMore models to detect actions in videos can be found here解读: 用 tfhub.dev/deepmind/i3d-kinetics-400/1 模块去识别视频数据里的动作The underlying model原创 2021-10-24 20:23:09 · 207 阅读 · 0 评论 -
Tensorflow Lite Model Maker --- 姿态分类篇
tflite_pose_classificationThis notebook teaches you how to train a pose classification model using MoveNet and TensorFlow Lite. The result is a new TensorFlow Lite model that accepts the output from the MoveNet model as its input, and outputs a pose class原创 2021-10-11 18:59:48 · 1109 阅读 · 0 评论 -
Tensorflow Lite Model Maker --- 物体检测篇+笔记
tflite_object_detectionThe Model Maker library uses transfer learning to simplify the process of training a TensorFlow Lite model using a custom dataset. Retraining a TensorFlow Lite model with your own custom dataset reduces the amount of training data r原创 2021-10-09 18:04:46 · 2483 阅读 · 2 评论 -
Tensorflow Lite 笔记(一)
TensorFlow Litehttps://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/examples/python/TensorFlow Lite Python image classification demo# Get photocurl https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/lite/examples/原创 2021-09-28 21:46:02 · 249 阅读 · 0 评论 -
经典网络模型 ResNet-50 在 ImageNet-1k 上的研究 | 实验笔记+论文解读
需要 ImageNet-1k 数据集的来这篇博文: https://blog.csdn.net/qq_39377134/article/details/103128970但是要准备好 240 GB 大小的磁盘空间哈,因为数据集压缩包是 120 GB 多一些。本文是关于 ResNet-50 在 ImageNet 上的实验研究,目前的话,实验数据集分别是 ImageNet-240 和 ImageNet-1k,其中前者是后者的一个子集。接下来直接上实验结果吧,第一次实验,我是 freeze all laye原创 2021-09-17 09:50:54 · 15324 阅读 · 16 评论 -
神经网络模型可视化工具 Netron | 每日工具推荐
今天要给大家介绍的是神经网络模型可视化工具 Netron,Netron 支持 ONNX, TensorFlow Lite, Keras, Caffe, Darknet, ncnn, MNN, PaddlePaddle, Core ML, MXNet, RKNN, MindSpore Lite, TNN, Barracuda, Tengine, TensorFlow.js, Caffe2 and UFF。同时实验性支持 PyTorch, TensorFlow, TorchScript, OpenVINO, T原创 2021-09-15 17:35:25 · 5852 阅读 · 5 评论 -
汽车燃料效率预测
本教程的目的是要预测汽车的燃料效率,相比于之前的分类,这是一个回归问题,回归是针对连续变量的,分类是针对离散变量的用的数据集是 Auto MPG ,包含有 MPG、Cylinders、Displacement、Horsepower、Weight、Acceleration、Model Year、Origin 这么 8 个特征,我们的目的是根据其它 7 个特征去预测 MPG ,数据如下图所示由于本教程篇幅过长,我们这里就不粘贴过多代码了,如果需要查看代码,文末有提供链接地址第一步我们需要加载数据原创 2021-07-22 16:51:55 · 359 阅读 · 0 评论 -
神经网络理解(一)
原创 2017-08-12 17:59:09 · 293 阅读 · 0 评论 -
神经网络历史(一)
原创 2017-04-21 22:53:55 · 452 阅读 · 0 评论 -
神经网络历史(二)
原创 2017-05-01 22:38:40 · 498 阅读 · 0 评论 -
前言
原创 2017-04-19 14:49:21 · 257 阅读 · 0 评论