PAT A1010

  • 题目:
    Given a sequence of positive numbers, a segment is defined to be a consecutive subsequence. For example, given the sequence { 0.1, 0.2, 0.3, 0.4 }, we have 10 segments: (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) and (0.4).

Now given a sequence, you are supposed to find the sum of all the numbers in all the segments. For the previous example, the sum of all the 10 segments is 0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0.
Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N, the size of the sequence which is no more than 10​5​​. The next line contains N positive numbers in the sequence, each no more than 1.0, separated by a space.
Output Specification:

For each test case, print in one line the sum of all the numbers in all the segments, accurate up to 2 decimal places.
Sample Input:

4
0.1 0.2 0.3 0.4

Sample Output:

5.00

  • 题目大意:
    给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段。例如,给定数列{0.1, 0.2, 0.3, 0.4},我们有(0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) (0.4) 这10个片段。给定正整数数列,求出全部片段包含的所有的数之和。如本例中10个片段总和是0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0,在一行中输出该序列所有片段包含的数之和,精确到小数点后2位~
  • 分析
    对于第i个输入的数字,设有两个指针p,q,p指向其前面的序列,q,指向其后面的序列。则p可能取的位置有1~i, 有i 中可能性;q可能取的位置有i ~ n, 有n-i+1种可能性,则所有包含i个数字可能性为i*(n-i+1),则对每个输入的数字,就知道他在序列和中出现的次数。累加即可得到最后的答案

代码实现:

#include <iostream>
#include <cstdio>
using namespace std;
int main()
{
    int n,count1 = 1;
    cin >> n;
    double temp, res = 0.0;
    for(int i = 1; i <= n; i++){
        cin >> temp;
        res += temp * i * (n - i + 1);
    }
    printf("%.2f", res);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值