学习日志22

实现代码量子变分电路设计背包问题强化学习方案:
实现思路和流程为:

  1. 环境定义 (BackpackEnv 类)

    初始化:包含物品的重量、价值列表和背包的最大容量。
    状态:表示当前考虑的物品索引。
    动作:选择是否将当前物品放入背包。

  2. 动作执行 (step 方法)

    执行动作:根据选择的动作(物品)更新背包的容量和状态。
    奖励:如果物品可以放入背包,则获得该物品的价值作为奖励;否则,给予惩罚。
    完成标志:如果所有物品都已被考虑,则任务完成。

  3. 环境重置 (reset 方法)

    重置环境状态到初始状态,准备新一轮的训练或评估。

  4. 量子电路创建 (create_quantum_circuit 函数)

    创建一个量子电路,为每个量子比特应用Hadamard门,实现叠加态。

  5. 量子Q网络定义 (QuantumQNetwork 类)

    初始化:定义网络的量子比特数量和可训练参数theta。
    前向传播:根据当前状态生成量子电路,并应用参数theta进行量子旋转。
    测量:对量子电路进行测量,获取经典比特值。

  6. 选择最佳动作 (choose_best_action 函数)

    根据量子Q网络生成的量子电路和测量结果,评估每个可能动作的Q值。
    选择具有最高Q值的动作。

  7. 训练量子Q网络 (train_quantum_qnetwork 函数)

    初始化:设置优化器和损失函数。
    训练循环:通过与环境的交互,使用epsilon-greedy策略选择动作。
    梯度更新:根据奖励和Q值计算损失,通过反向传播更新网络参数。

  8. 解码最优策略 (decode_optimal_policy 函数)

    根据训练后的量子Q网络的参数theta,解码出最优策略。

  9. 主函数 (main 函数)

    初始化环境和量子Q网络。
    执行训练过程。
    测试训练后的量子Q网络,并可视化结果。
    解码并打印最优策略。

  10. 可视化

    使用matplotlib和qiskit的可视化工具展示量子电路和训练结果。

目前存在的问题,代码具有一定的bug,量子电路的建没有理论支撑。

下一步修改方向,量子强化学习在拆卸序列问题中对强化学习进行替代


# 导入所需的Python库和模块
import numpy as np
import torch
from qiskit.visualization import plot_histogram
import matplotlib.pyplot as plt
from collections import namedtuple
import random
from qiskit import QuantumCircuit, transpile
from qiskit_aer import Aer
from qiskit.visualization import plot_histogram, circuit_drawer
import numpy as np
import torch

import torch
import torch.nn as nn
from qiskit import QuantumCircuit
from qiskit.visualization import plot_histogram, circuit_drawer
# 导入所需的库
import matplotlib.pyplot as plt
# 定义物品的重量和价值列表
weights = [2, 3, 4, 6]
values = [3, 4, 5, 9]
# 背包的最大容量
capacity = 7
# 探索与利用的平衡参数
epsilon = 0.1

class BackpackEnv:
    def __init__(self, weights, values, capacity):
        self.weights = weights  # 物品重量列表
        self.values = values  # 物品价值列表
        self.capacity = capacity  # 背包最大容量
        self.state = 0  # 初始化状态为0

    def step(self, action):

        # 执行一个动作,更新背包状态,并返回奖励和是否完成的状态
        print(action)  # 打印动作
        print(len(self.weights))  # 打印物品数量
        print(self.capacity)  # 打印背包当前容量
        print(self.weights[action])  # 打印当前选择物品的重量

        # 检查是否可以将物品放入背包
        if action < len(self.weights) and self.capacity >= self.weights[action]:
            self.capacity -= self.weights[action]  # 从背包容量中减去物品重量
            reward = self.values[action]  # 获得物品价值作为奖励
        else:
            reward = -100  # 如果动作非法(如背包容量不足),则给予惩罚
        self.state += 1  # 状态递增,表示选择了下一个物品
        done = self.state >= len(self.weights)  # 如果已经考虑了所有物品,则完成
        print(done)  # 打印是否完成
        return self.state, reward, done  # 返回新状态、奖励和完成状态

    def reset(self):
        # 重置环境到初始状态
        self.state = 0  # 重置状态为0
        # 重置物品重量和价值列表(在实际使用中可能不需要这行代码,视具体情况而定)
        self.weights = weights
        self.values = values
        self.capacity = capacity
        return self.state  # 返回初始状态

# 定义一个函数,用于创建具有Hadamard门的量子电路
def create_quantum_circuit(num_qubits):
    qc = QuantumCircuit(num_qubits)  # 创建一个量子电路
    for i in range(num_qubits):
        qc.h(i)  # 为每个量子比特应用Hadamard门
    return qc


# 定义量子Q学习网络,继承自PyTorch的nn.Module
class QuantumQNetwork(nn.Module):
    def __init__(self, num_qubits):
        super(QuantumQNetwork, self).__init__()  # 调用基类的构造函数
        self.num_qubits = num_qubits  # 量子比特的数量
        # 初始化可训练的参数theta,形状为[num_qubits]
        self.theta = nn.Parameter(torch.randn(num_qubits))


    def forward(self, state):

        qc = create_quantum_circuit(self.num_qubits)
        # ... 根据状态调整量子电路 ...


        #添加量子旋转门
        # 应用可训练的参数theta
        for i in range(self.num_qubits):
            theta_val = self.theta[i].item()
            qc.rx(2 * theta_val, i)

        # 添加测量操作
        qc.measure_all()
        return qc
         # 返回量子电路和对应的参数 theta_val

    def measure(self):
        # 为量子电路添加测量操作
        self.qc.measure_all()  # 对所有的量子比特进行测量
        return self.qc  # 返回带有测量的量子电路

# 选择最佳动作的函数,基于量子Q网络和当前环境状态
def choose_best_action(qnetwork, state, env, backend, shots=1024):
    # 初始化一个字典来存储每个动作的Q值
    action_q_values = {i: 0 for i in range(len(env.weights))}

    # 对每个可能的动作进行评估
    for action in range(len(env.weights)):
        # 使用量子Q网络的forward方法生成对应当前状态和动作的量子电路
        qc = qnetwork.forward(state + (1 << action))


        # 将量子电路转译并执行
        new_circuit = transpile(qc, backend)
        job = backend.run(new_circuit, shots=shots)
        result = job.result()
        counts = result.get_counts(qc)  # 获取测量结果的计数

        # 假设测量结果中出现次数最多的状态对应的Q值最高
        # 这里需要根据量子电路的设计来确定如何从结果中提取Q值
        q_value = max(counts.values()) if counts else 0
        action_q_values[action] = q_value  # 将计算得到的Q值存储在字典中

    # 选择具有最高Q值的动作
    best_action = max(action_q_values, key=action_q_values.get)
    return best_action

# 训练量子Q网络
def train_quantum_qnetwork(env, qnetwork, episodes):

    # 定义优化器和损失函数
    optimizer = torch.optim.Adam(qnetwork.parameters(), lr=0.1)
    criterion = torch.nn.MSELoss()

    for episode in range(episodes):
        state = env.reset()  # 重置环境状态
        done = False  # 初始化完成标志为False
        total_reward = 0  # 初始化总奖励


        explored_all_items = False
        # 训练循环直到完成所有动作
        while not done:
            # 实现epsilon-greedy探索策略
            if random.uniform(0, 1) < epsilon:
                action = random.randint(0, len(env.weights) - 1)  # 随机选择动作
            else:
                # 根据量子Q网络选择最佳动作
                action = choose_best_action(qnetwork, state, env, Aer.get_backend('qasm_simulator'))

            # 执行选择的动作,并获取新的状态、奖励和完成标志
            next_state, reward, done = env.step(action)
            total_reward += reward  # 更新总奖励




            # 计算当前状态的Q值
            # 使用量子Q网络生成对应当前状态的量子电路
            qc = qnetwork.forward(state)

            # 确保量子电路包含测量操作,以便可以从量子态中获取经典比特值


            # 获取Qiskit Aer的量子电路模拟器后端
            backend = Aer.get_backend('qasm_simulator')

            # 将量子电路转译为后端支持的格式
            new_circuit = transpile(qc, backend)

            # 使用模拟器执行量子电路
            job = backend.run(new_circuit)

            # 从模拟器获取执行结果
            result = job.result()

            # 从结果中获取测量结果的计数
            q_value = result.get_counts(qc)

            # 如果测量结果中有'0'这个状态,就取它的计数作为Q值
            # 这里假设我们只关心测量结果为'0'的情况,这可能需要根据电路设计进行调整
            if '0' in q_value:
                q_value = q_value['0']
            else:
                # 如果测量结果中没有'0',就将Q值设为0
                q_value = 0
            # 将得到的Q值转换成PyTorch张量,用于后续的梯度计算
            # 这里将Q值封装为一个张量,并设置requires_grad=True,以便进行梯度计算
            q_value_tensor = torch.tensor([q_value], dtype=torch.float, requires_grad=True)
            # 清除之前的梯度信息,为新的梯度更新做准备
            optimizer.zero_grad()
            # 创建一个目标张量,这里简化为目标就是本次得到的奖励值
            target = torch.tensor([reward], dtype=torch.float)
            # 计算预测Q值和目标Q值之间的损失
            loss = criterion(q_value_tensor, target)
            # 反向传播,计算梯度
            loss.backward()
            # 使用优化器根据计算得到的梯度更新网络参数
            optimizer.step()
            # 转移到下一个状态
            if not explored_all_items:
                if next_state >= len(env.weights):  # 检查是否探索了所有物品
                    explored_all_items = True
                    env.reset()  # 重置环境状态,开始新一轮训练
                    state = env.reset()
                    done = False
                else:
                    state = next_state


            print(f"Episode {episode}: Total reward {total_reward}")
    return qnetwork


def decode_optimal_policy(qnetwork, env):
    optimal_policy = []
    num_qubits = qnetwork.num_qubits  # 获取量子电路中的量子比特数量
    for state in range(len(env.weights)):
        # ... 省略之前的代码 ...
        # 确保添加一个包含四个元素的元组到 optimal_policy
     if state < num_qubits:
        theta_val = qnetwork.theta[state].item()
        random_factor = np.random.uniform(-1, 1)  # 生成一个[-1, 1]之间的随机数
        effective_theta_val = theta_val + random_factor
        if effective_theta_val > 0:
              optimal_policy.append((state, 'choose', env.weights[state], env.values[state]))
        else:
            optimal_policy.append((state, 'skip', 0, 0))  # 为未选择的物品设置权重和价值为0

    else:

        print(f"Error: State index {state} is out of bounds for theta.")

    return optimal_policy


# 主函数
def main():
    # 初始化背包问题的参数
    num_qubits = 4  # 简化为4量子比特
    episodes = 300  # 总训练轮数
    epsilon = 0.1  # 探索与利用的平衡参数
    env = BackpackEnv(weights, values, capacity)  # 创建背包环境

    # 创建量子Q网络
    qnetwork = QuantumQNetwork(num_qubits)
    # 训练量子Q网络
    trained_qnetwork = train_quantum_qnetwork(env, qnetwork, episodes=20)

    # 测试训练后的量子Q网络
    state = env.reset()
    circuit = trained_qnetwork.forward(state)  # 生成量子电路
    circuit.measure_all()  # 添加测量操作
    backend = Aer.get_backend('qasm_simulator')  # 获取模拟器后端
    new_circuit = transpile(circuit, backend)  # 转译量子电路
    job = backend.run(new_circuit)  # 执行量子电路
    result = job.result()  # 获取结果
    print("Test result:", result.get_counts())  # 打印测量结果
    circuit.draw("mpl")  # 绘制量子电路图
    plt.show()  # 显示电路图

    # 解码最优策略
    optimal_policy = decode_optimal_policy(trained_qnetwork, env)
    # 打印最优策略
    for state, action, weight, value in optimal_policy:
        print(f"Item {state}: {action} (重量: {weight}, 价值: {value})")
    # 计算并打印最大价值
    max_value = sum(value for _, _, _, value in optimal_policy if action == 'choose')
    print(f"最大价值: {max_value}")


if __name__ == "__main__":
    main()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值