《python机器学习及实战》学习笔记ch1之良/恶性乳腺癌肿瘤预测

本文是《python机器学习及实战》一书的学习笔记,主要介绍良/恶性乳腺癌肿瘤预测。通过获取数据,选取特征,利用sklearn的逻辑斯蒂回归构建分类模型,并展示学习过程中的图表。
摘要由CSDN通过智能技术生成

1.文章说明

本系列文章都是自己学习《python机器学习及实战》这本书时所做的一些笔记而已,仅为学习作参考。

2.数据集地址:

数据地址是书中给出的数据下载地址:

https://pan.baidu.com/s/1dENAUTr#list/path=%2F&parentPath=%2FPython%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E5%8F%8A%E5%AE%9E%E8%B7%B5

3.良/恶性乳腺癌肿瘤预测学习

3.1获取数据

import pandas as pd



#获取数据

#获取训练数据
df_train = pd.read_csv(r"../Datasets/Breast-Cancer/breast-cancer-train.csv")
# print(df_train.head(5))#查看训练数据前5"""
   Unnamed: 0  Clump Thickness  Cell Size  Type
0         163                1          1     0
1         286               10         10     1
2         612               10         10     1
3         517                1          1     0
4         464                1          1     0
"""
#获取测试数据
df_test = pd.read_csv(r"../Datasets/Breast-Cancer/breast-cancer-test.csv")
# print(df_test.head(5)) #查看测试数据前5"""
   Unnamed: 0  Clump Thickness  Cell Size  Type
0         158                1          2     0
1         499                1          1     0
2         396                1          1     0
3         155                5          5     1
4         321                1          1     0
"""

3.2选取特征,构建测试集中的正负分类样本

#选取‘Clump Thickness’‘Cell Size’作为特征,构建测试集的正负分类样本
df_test_negative = df_test.loc[df_test['Type'] == 0][['Clump Thickness','Cell Size']]
# print(df_test_negative.head(5))
"""
   Clump Thickness  Cell Size
0                1          2
1                1          1
2                1          1
4                1          1
5                1          1
"""
df_test_positive = df_test.loc[df_test['Type']
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值