python
文章平均质量分 60
清萝卜头
做快乐的事,做幸福的人
展开
-
如何替换dataframe中的nan?
在做数据清洗等工作时,必不可少的环节就是缺失值处理。在采用pandas读取或处理数据时,dataframe的缺失值默认是用nan填充的。但大多数情况下,我们需要的是None或者Null值而不是nan.所以,如何替换dataframe中的nan呢?替换nan的方法有很多,本文总结了三个方法。dataframe.fillna()方法,dataframe.applymap()以及dataframe....原创 2020-01-20 19:04:57 · 35047 阅读 · 2 评论 -
pandas.read_excel()之数据类型
1.我们准备一下测试数据。2.通过pandas读取表格中的数据并检测各列的数据类型(不指定类型)import pandas as pd# 获取测试数据data = pd.read_excel('../../test.xlsx',sheet_name='Sheet1',header=0)print(data)#或缺每列的数据类型print(data.dtypes)输出...原创 2020-01-20 17:19:50 · 16516 阅读 · 0 评论 -
pandas.DataFrame.apply方法详解
1.方法的参数解释官方解释:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.apply.htmlDataFrame.apply(self, func, axis=0, broadcast=None, raw=False, reduce=None, result_type=None, ar...原创 2019-12-20 18:53:25 · 19052 阅读 · 2 评论 -
源码解读----之-----KMeans
(小白的个人理解,很多地方可能不准确,欢迎大家指正,向大家学习)原创 2017-10-19 11:25:54 · 1850 阅读 · 0 评论 -
从零开始学Python学习笔记---之--pandas序列部分
pandas序列部分原创 2017-10-31 09:51:08 · 1852 阅读 · 0 评论 -
python将秒数转化为时间格式
1.转化成时间格式seconds =35400m, s = divmod(seconds, 60)h, m = divmod(m, 60)print("%d:%02d:%02d" % (h, m, s))结果:9:50:002.转化成日期时间格式import time timeArray = time.localtime(1462482700)#秒数...原创 2017-11-03 14:21:49 · 20988 阅读 · 3 评论 -
python基础之列表内建函数(部分)
# -*- coding: utf-8 -*-"""@file:listStudy.py@time:2018/4/7 17:30@author:xq@contact:xiaoq_xiaoq@163.com"""#在列表末尾添加新的对象# myist = [1,2,3,4,5]# myist.append(6)# print(myList)#[1, 2, 3, 4, 5, 6]...原创 2018-04-07 19:50:25 · 388 阅读 · 0 评论 -
python基础之字典内建函数(部分)
# -*- coding: utf-8 -*-"""@file:dictStudy.py@time:2018/4/7 20:07@author:xq@contact:xiaoq_xiaoq@163.com"""#cmp(dict1, dict2)比较两个字典元素。备注:python3中已经被取代#如果两个字典的元素相同返回0,如果字典dict1大于字典dict2返回1,如果字典di原创 2018-04-07 20:54:11 · 430 阅读 · 0 评论 -
python基础之字符串内建函数(部分)
# -*- coding: utf-8 -*-"""@file:strstudy.py@time:2018/4/2 21:45@author:xq@contact:xiaoq_xiaoq@163.com"""#把字符串的第一个字符大写# a = 'test'# print(a.capitalize())#'Test'#原字符串居中,并使用空格填充至长度 width 的新...原创 2018-04-03 20:44:12 · 305 阅读 · 0 评论 -
python基础学习之队列queque
在python2中的队列模块为Queue,在python3中Queue模块已被重命名为queue。Queue----一个同步队列类队列(Queue)模块实现多生产者、多用户队列。当必须在多个线程之间安全地交换信息时,它在线程编程中特别有用。这个模块中的Queue类实现了所有必需的锁定语义。这取决于Python中线程支持的可用性。该模块实现了三种类型的队列,它们只在检索条目的顺序上有所不同。Queu...原创 2018-04-17 17:35:52 · 1273 阅读 · 0 评论 -
python实现两个字符的减(-)运算
在有些时候,我们可能会遇到字符之间的距离计算。在C语言中允许两个字符使用‘-’运算符,但是python不支持这个操作。python的ord()函数参数是一个字符,返回值是该字符对应的ascii码。因此我们可以通过该方法来实现两个字符之间的减法运算。print(ord('a')-ord('b'))-1备注:与ord()功能相反的是chr()函数,它的参数是一个范围在 (0~255)的整数,可以是1...原创 2018-06-28 10:33:58 · 34239 阅读 · 0 评论 -
源码解读----之_k-means++初始化质心的方法(被k_means调用)
本文是个人的理解,由于刚接触并且自身能力也有限,也许会存在误解,欢迎留言指正,本人一定虚心请教,谢谢def _k_init(X, n_clusters, x_squared_norms, random_state, n_local_trials=None): """根据k-means++初始化质心 @:parameter X : 输入数据,应该是双精度(dtype =原创 2017-10-24 15:39:53 · 3499 阅读 · 0 评论 -
源码解读----之_kmeans_single_lloyd和_kmeans_single_elkan初始化质心的方法
源码解读----之_kmeans_single_lloyd和_kmeans_single_elkan初始化质心的方法,_init_centroids法被_kmeans_single_lloyd和_kmeans_single_elkan调用,而_kmeans_single_lloyd和_kmeans_single_elkan被k_means方法调用def _init_centroids(原创 2017-10-24 15:25:39 · 1047 阅读 · 0 评论 -
源码解读----之-----k_means(被KMeans类调用)
源码解读----之-----k_means(被KMeans类调用),本文是个人的理解,由于刚接触并且自身能力也有限,也许会存在误解,欢迎留言指正,本人一定虚心请教原创 2017-10-24 15:09:14 · 1262 阅读 · 0 评论 -
pycharm自动添加注释
pycharm自动添加注释原创 2017-09-30 09:59:05 · 5001 阅读 · 0 评论 -
已知两点经纬度,计算两点间的距离
已知两点经纬度,计算两点间的距离原创 2017-09-30 10:36:11 · 7465 阅读 · 1 评论 -
深入理解lambda
深入理解lambda原创 2017-09-30 11:43:58 · 429 阅读 · 0 评论 -
聚类算法学习----之----sklearn.cluster.KMeans
聚类算法学习----之----sklearn.cluster.KMeans原创 2017-10-18 09:51:19 · 13734 阅读 · 0 评论 -
从零开始学Python学习笔记---之--pandas数据框(1)
作为从事数据相关工作朋友,平时接触的更多的可能是一张有板有眼的数据表格,在这里我们就叫作数据框。在Python中可以通过pandas模块的DataFrame函数构造数据框。1、数据框的构造在Python中,可以借助于列表、元组、字典进行手工构建数据框,我们用例子说明:通过列表创建数据框#构造数据框import pandas as pddf =pd.DataFrame([[1原创 2017-11-02 20:43:22 · 2647 阅读 · 0 评论 -
pymongo连接mongodb3.4.7
#encoding = utf-8"""@version:??@author: xq@contact:xiaoq_xiaoq@163.com@file: gpsDataMinStd.py@time: 2017/10/12 13:13"""from pymongo import MongoClient# 连接mongodb获取数据class dbApi(object):原创 2017-10-12 14:49:32 · 743 阅读 · 0 评论 -
python基础学习小结(1)
python基础学习小结,那些不轻易间的细节总容易被忽略,所以,一点一点的积累,把基础打扎实原创 2017-10-30 21:09:47 · 415 阅读 · 0 评论 -
Anaconda为Python3.X安装basemap
Anaconda为Python3.X安装basemap原创 2017-10-13 15:01:41 · 3692 阅读 · 0 评论 -
Basemap绘制四川轮廓
Basemap绘制四川轮廓原创 2017-10-13 17:25:59 · 2516 阅读 · 0 评论 -
从零开始学Python学习笔记---之--pandas数据框(2)
如何借助于pandas模块进行数据的预处理,内容包括数据集变量与观测的筛选、变量的重命名、数据类型的变换、排序、重复观测的删除、和数据集的抽样。原创 2017-11-08 17:10:04 · 2044 阅读 · 0 评论 -
从零开始学Python学习笔记---之--pandas数据框(3)
pandas模块的频数统计、缺失值处理、数据映射、数据汇总......原创 2017-11-08 20:32:28 · 3169 阅读 · 0 评论 -
Python字典按值排序、包含字典的列表按字典值排序的方法
Python字典按值排序、包含字典的列表按字典值排序的方法原创 2017-09-29 15:25:59 · 2149 阅读 · 0 评论