AI医药论文笔记-DREAM: Drug-drug interaction extraction with enhanced dependency graph and attention mechan

DREAM是一种基于GNN的药物相互作用(DDI)提取方法,通过增强依赖图和图关注机制提高表示准确性。论文提出使用PageRank发现长距离单词增强依赖图,并通过图注意机制区分连接节点。实验结果表明,DREAM在DDIExtraction 2013语料库上表现出优越性能,证实了关注长距离单词和辨别邻居的有效性。
摘要由CSDN通过智能技术生成

DREAM:增强依赖图和注意机制的药物相互作用提取

DREAM: Drug-drug interaction extraction with enhanced dependency graph and attention mechanism

目录

DREAM:增强依赖图和注意机制的药物相互作用提取

1.ABSTRACT

2.Introduction

3.方法

3.1.顺序表示生成模块

3.2.依赖图增强模块

3.3.图表示生成模块

3.4.关系分类模块

4.实验

4.1数据集

4.2 对比实验

结论


1.ABSTRACT

药物相互作用(DDI)旨在描述两种或多种药物组合产生的效应关系。在药物警戒和临床研究等生物信息学领域,它是一项重要的语义处理任务。最近,图神经网络被应用于依赖图,以更好的语义表示来提高DDI提取的性能。然而,目前的方法更多地关注于一阶依赖关系,无法正确区分连接节点。为了更好地融合依赖关系并改进表示,我们在本工作中提出了一种新的DDI提取方法,即增强依赖图和注意机制的药物-药物相互作用提取。具体而言,利用一些潜在的长程词来增强依赖图,以完成语义信息并适应图神经网络的聚合过程。采用图关注机制,通过根据特定任务区分连接节点,进一步改进单词表示。DDIExtraction 2013语料库(该领域的基准语料库)的数值实验证明了我们提出的方法的优越性。

2.Introduction

事实上,注意一些长距离单词和辨别邻居的能力对于提取DDI很重要。由于自动提取的依赖关系图仅描述单词之间的一阶修饰关系。仅使用这些直接连接的词来生成GNN的表示可能会导致语义不完整并丢失一些关键信息。此外,每个单词中包含的信息都是多种多样的,并不是所有这些信息都是表示毒品所必需的。平等对待它们,没有适当的区分,不能为下面的交互分类提供语义突出的表示。

为了解决这些问题,我们建议在增强的依赖图上采用图关注机制,以生成用于DDI提取任务的药物的更精确表示。具体而言,在整个句子上采用双向长短记忆(BiLSTM),首先从顺序方面学习每个单词的表示。然后,将最著名的图分析方法PageRank应用于整个依赖图,为每个单词生成更合适的表示集,该方法已被证明是有效的。之后,采用在表示和可解释性方面突出的注意机制,进一步区分相关词,并从图形方面生成表示。最后,通过最大池层获得的整个句子和两种目标药物的表示被连接并馈送到Softmax分类器中,用于DDI分类。在DDIExtraction 2013语料库上进行了数值实验。与以前的DDI提取模型的比较结果证明了我们的新方法的优越性。性能研究证明了在DDI提取任务中关注长距离单词和辨别邻居的有效性。

我们工作的主要贡献可以总结如下:

•我们提出了一种基于GNN的DDI提取新框架,名为药物-药物相互作用extraction with Enhanced Dependency Graph and Attention Mechanism(DREAM)。

•为了捕获更关键的语义信息,我们建议使用PageRank发现的长距离潜在单词来增强依赖关系图。

•为了正确区分连接词,我们建议根据下游任务通过图关注机制区分增强依赖图中的连接节点

•我们对DD

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值