AI医药论文阅读笔记-Extracting Drug-drug Interactions with a Dependency-based Graph Convolution Neural Networ

该博客介绍了如何利用图卷积神经网络(GCN)和双向长短记忆(BiLSTM)结合,从生物医学文献的依赖图中有效提取药物相互作用(DDI)。研究指出,依赖路径可能丢失关键信息,而整个依赖图的使用能提高DDI提取性能。模型在DDIExtraction 2013语料库中达到最先进的结果,F1得分77.0%,优于传统方法。
摘要由CSDN通过智能技术生成

基于依赖图的图卷积神经网络提取药物相互作用

Extracting Drug-drug Interactions with a Dependency-based Graph Convolution Neural Network

2019.11 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

目录

基于依赖图的图卷积神经网络提取药物相互作用

1.摘要

2.INTRODUCTION

relate

3.方法​编辑

3.1 BiLSTM层

3.2 GCN层

3.3 输出层

4.实验

4.1 Dataset

4.2 比较实验

4.3 消融实验

5 结论


1.摘要

药物相互作用(DDI)在药物警戒等生物医学的各种应用中发挥着关键作用。生物医学出版物中经常报道DDI,使其成为提取DDI的有效来源。尽管神经网络在DDI提取方面取得了竞争优势,但之前的工作依赖依赖路径来去除生物医学出版物句子中的噪声。然而,这种方法可能会忽略关于DDI的关键信息。有效地利用大量依赖信息可以改进DDI提取。在这篇文章中,我们提出了一个模型,该模型结合了图卷积神经网络(GCN)和双向长短记忆(BiLSTM),从句子的整个依赖图中提取DDI交互。我们在该领域的基准语料库中评估了我们的模型,即DDIExtraction 2013语料库。我们的模型获得了最先进的结果(F1的77.0%),这优于之前工作中报告的结果。

结合了图卷积神经网络(GCN)和双向长短记忆(BiLSTM),从句子的整个依赖图中提取DDI交互。

2.INTRODUCTION

生物医学文献中包含了大量关于DDI的最新信息。生物医学文献的快速增长使得手动DDI提取变得不可能。因此,开发从生物医学文献中自动提取DDI的系统对于正在进行的临床研究具有重要意义。

  1. 机器学习方法:传统的基于特征的方法。

  2. 基于神经网络的方法优于传统的基于特征的方法[6],[7]。然而,神经网络无法有效地从长而复杂的句子中学习。例如,DDIExtraction 2013语料库中最长的句子包含150多个单词。因此,神经网络很难捕获有用的信息,同时忽略长句子中的噪声。

  3. 一些研究将最短依赖路径(SDP)[8]、[9]纳入深度神经网络,这可以提高性能,因为SDP能够去除噪声,但在句子中保留有效信息。最近的研究[10]证明了这种方法在DDI提取中的有效性。然而,依赖路径可能会从句子中丢失某些关键信息。

将整个依赖图集成到深度神经网络中:

  1. 双向长短记忆(BiLSTM)被用于学习每个单词的表示,并将其应用于整个句子。

  2. 将句子的整个依赖图送入图卷积神经网络(GCN)[11]、[12],以将依赖信息集成到单词表示中。

  3. 使用最大池层从单词表示中捕获显著信息,并生成句子和两个目标药物实体的表示。

  4. 这些

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值