An Introduction to GoogLeNet

Abstract

GoogLeNet is a brand new deep learning structure proposed by Christian Szegedy in 2014. Prior to this, AlexNet, VGG and other structures all achieved better training effect by increasing the depth of the network, but the increase of layers would bring many negative effects, such as overfit, gradient vanishing, gradient explosion, etc. At the meantime, it is difficult to select the hyperparameters when constructing a neural network. GoogLeNet is proposed from another point of view to improve the training results. There is a recurrent module called Inception in GoogLeNet. This Inception Module provides several candidate CNN configurations. And through training, the neural network can automatically find the optimal combination among those candidate configurations. Besides, using 1x1 convolution kernels reduces the computation to a large extent.
In conclusion, GooLeNet can use computing resources in a more efficient way by extracting more features with the same computation.
Here comes the structure of GoogLeNet.
The Stru

Inception Module

Here comes the structure of Inception Module.
在这里插入图片描述Explanation:

  1. The number in the parenthesis such as 16 in (16), represents the number of channels of a convolution kernel.
  2. “Concatenate” represents the process of concatenating those four tensors along channels.在这里插入图片描述
  3. Using 1x1 convolution kernels can reduce the computation to a large extent. 在这里插入图片描述

Implementation of Inception Module

class InceptionA(torch.nn.Module):
    def __init__(self, in_channels):
        super(InceptionA, self).__init__()
        self.branch1x1 = torch.nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch5x5_1 = torch.nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch5x5_2 = torch.nn.Conv2d(16, 24, kernel_size=5, padding=2)
        self.branch3x3_1 = torch.nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch3x3_2 = torch.nn.Conv2d(16, 24, kernel_size=3, padding=1)
        self.branch3x3_3 = torch.nn.Conv2d(24, 24, kernel_size=3, padding=1)
        self.branch_pool = torch.nn.Conv2d(in_channels, 24, kernel_size=1)

    def forward(self, x):
        branch1x1 = self.branch1x1(x)
        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)
        branch3x3 = self.branch3x3_3(branch3x3)
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)
        outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
        return torch.cat(outputs, dim=1)

Application in Classifying MINST Dataset

The complete implementation code is as follow.

# Import packages
import torch
from torchvision import transforms# For constructing DataLoader
from torchvision import datasets# For constructing DataLoader
from torch.utils.data import DataLoader# For constructing DataLoader
import torch.nn.functional as F# For using function relu()
import torch.optim as optim# For constructing Optimizer

# Prepare dataset
batch_size = 64
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307, ), (0.3081, ))
])
train_dataset = datasets.MNIST(root='../dataset/mnist/',
                               train=True,
                               download=True,
                               transform=transform)
train_loader = DataLoader(train_dataset,
                          shuffle=True,
                          batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/',
                              train=False,
                              download=True,
                              transform=transform)
test_loader = DataLoader(test_dataset,
                         shuffle=False,
                         batch_size=batch_size)

# Inception Module
class InceptionA(torch.nn.Module):
    def __init__(self, in_channels):
        super(InceptionA, self).__init__()
        self.branch1x1 = torch.nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch5x5_1 = torch.nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch5x5_2 = torch.nn.Conv2d(16, 24, kernel_size=5, padding=2)
        self.branch3x3_1 = torch.nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch3x3_2 = torch.nn.Conv2d(16, 24, kernel_size=3, padding=1)
        self.branch3x3_3 = torch.nn.Conv2d(24, 24, kernel_size=3, padding=1)
        self.branch_pool = torch.nn.Conv2d(in_channels, 24, kernel_size=1)

    def forward(self, x):
        branch1x1 = self.branch1x1(x)
        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)
        branch3x3 = self.branch3x3_3(branch3x3)
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)
        outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
        return torch.cat(outputs, dim=1)

# Design model
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(88, 20, kernel_size=5)
        self.incep1 = InceptionA(in_channels=10)
        self.incep2 = InceptionA(in_channels=20)
        self.mp = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(1408, 10)

    def forward(self, x):
        batch_size = x.size(0)
        x = F.relu(self.mp(self.conv1(x)))
        x = self.incep1(x)
        x = F.relu(self.mp(self.conv2(x)))
        x = self.incep2(x)
        x = x.view(batch_size, -1)
        x = self.fc(x)
        return x

# Construct loss and optimizer
model = Net()
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

# Train and Test
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data# x is input. y is target.
        optimizer.zero_grad()

        # forward + backward + update
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()# use ".item() " to avoid producing a computed graph
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0

def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set: %d %%' % (100 * correct / total))

if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()

Here comes the loss and the accuracy on test set of each epoch.
在这里插入图片描述在这里插入图片描述
Compared to the accuracy of 97% in my last article, this time it does improve 1% by using GooLeNet. From another perspective, the error rate goes from 3% to 2%, which is a 1/3 decrease. I have to say that the result is quite thrilling.

That’s all. Thank you for your attention.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
经导师精心指导并认可、获 98 分的毕业设计项目!【项目资源】:微信小程序。【项目说明】:聚焦计算机相关专业毕设及实战操练,可作课程设计与期末大作业,含全部源码,能直用于毕设,经严格调试,运行有保障!【项目服务】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 经导师精心指导并认可、获 98 分的毕业设计项目!【项目资源】:微信小程序。【项目说明】:聚焦计算机相关专业毕设及实战操练,可作课程设计与期末大作业,含全部源码,能直用于毕设,经严格调试,运行有保障!【项目服务】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 经导师精心指导并认可、获 98 分的毕业设计项目!【项目资源】:微信小程序。【项目说明】:聚焦计算机相关专业毕设及实战操练,可作课程设计与期末大作业,含全部源码,能直用于毕设,经严格调试,运行有保障!【项目服务】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 经导师精心指导并认可、获 98 分的毕业设计项目!【项目资源】:微信小程序。【项目说明】:聚焦计算机相关专业毕设及实战操练,可作课程设计与期末大作业,含全部源码,能直用于毕设,经严格调试,运行有保障!【项目服务】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。
1. 智慧监狱概述 智慧监狱的建设背景基于监狱信息化的发展历程,从最初的数字化监狱到信息化监狱,最终发展到智慧监狱。智慧监狱强调管理的精细化、监管的一体化、改造的科学化以及办公的无纸化。政策上,自2017年以来,司法部连续发布了多项指导性文件,推动智慧监狱的建设。 2. 内在需求与挑战 智慧监狱的内在需求包括数据应用与共享的不足、安防系统的单一功能、IT架构的复杂性、信息安全建设的薄弱以及IT运维的人工依赖。这些挑战要求监狱系统进行改革,以实现数据的深度利用和业务的智能化。 3. 技术架构与设计 智慧监狱的技术架构包括统一门户、信息安全、综合运维、安防集成平台和大数据平台。设计上,智慧监狱采用云计算、物联网、大数据和人工智能等技术,实现资源的动态分配、业务的快速部署和安全的主动防护。 4. 数据治理与应用 监狱数据应用现状面临数据分散和共享不足的问题。智慧监狱通过构建数据共享交换体系、数据治理工具及服务,以及基于数据仓库的数据分析模型,提升了数据的利用效率和决策支持能力。 5. 安全与运维 智慧监狱的信息安全建设涵盖了大数据应用、安全管理区、业务区等多个层面,确保了数据的安全和系统的稳定运行。同时,综合运维平台的建立,实现了IT系统的统一管理和自动化运维,提高了运维效率和系统的可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值