Adaptive Propagation Graph Convolutional Network

论文介绍一种新型图卷积网络模型AP-GCN,通过引入暂停单元控制节点间消息传递次数,学习每个节点的个性化传播步数。相较于传统GCN,它考虑了节点对邻居信息需求的差异,旨在提升性能。模型通过概率累积分布和权重加权求和来整合节点表示。
摘要由CSDN通过智能技术生成

Adaptive Propagation Graph Convolutional Network

论文来源:http://arxiv.org/abs/2002.10306 – 2020.IEEE

摘要

图卷积网络通过交叉顶点操作和节点间消息传递交换对图数据处理。如何进行可微交换协议(如:在GCN中1-hop Laplacian );如何权衡节点更新的复杂性。作者提出为每个节点辅以一个”暂停单元“,每次消息传递更新后决定是否继续传递消息。

介绍

以GCN层作为基础构建块,值得关注的几个问题:1.如何设计更好的消息传递机制,更好利用图的结构;2.如何权衡节点信息的更新和传递步骤。

研究问题:如果允许节点的信息传递步骤独立变化,GCN的性能能否得到改善?

模型

在这里插入图片描述

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DGP7R5X7-1650889796071)(C:\Users\zac\AppData\Roaming\Typora\typora-user-images\image-20220417171437240.png)]

对节点信息做一个二分类器,作为消息传递步

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值