机器学习-plot 函数
最近学机器学的课,在这里记录一下。
plot函数的使用
# 导入包
import numpy as np
import pandas as pd
import sklearn
import matplotlib.pyplot as plt
# 默认情况下,只给一个值是给Y 值,
plt.plot([1, 2, 3, 4])
# 如果plot 的参数中有两个,则第一个参数是给X 值,第二个参数是给Y 值
# plt.plot([1, 2, 3, 4], [2, 14, 16, 28])
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
运行结果:

# 第三参数是设置描绘线的颜色和样式
plt.plot([1, 2, 3, 4], [2, 14, 16, 28], 'g:')
plt.show()
运行结果:
绿色的虚线

x = [1, 2, 3, 4]
y = [2, 4, 6, 9]
plt.plot(x, y)
运行结果:

t = np.arange(0, 10, 0.2)
# 可以在同一张图中展示多个线
plt.plot(t, t * 2, 'b-',
t, t ** 2, 'g:')
运行结果:
在这里插入图片描述
t = np.arange(0, 10, 0.2)
# 可以在plot 参数中用上np 的数学方法
plt.plot(t, np.cos(t), 'r:')

def f1(x):
return np.exp(-x) * np.cos(2 * np.pi * x)
def f2(x):
return np.cos(2 * np.pi * x)
x = np.arange(0, 5, 0.1)
plt.plot(x, f1(x), 'r--',
x, f2(x), 'g:')

plt.figure(figsize=(10, 6))
# subplot() 的第一个参数是总行数,第二个参数是总列数,第三个参数是第几个图
# 这里是总共有两行,一列的第一个图
plt.subplot(2, 1, 1)
plt.plot(x, f1(x), 'r--')
# 这里是总共有两行,一列的第二个图
plt.subplot(2, 1, 2)
plt.plot(x, f2(x), 'g:')

# 条形统计图
# 数据(降雨量/六个月)
values = (25, 30, 35, 40, 20, 15)
index = np.arange(6)
# 创建一个15 * 10 的画板,下面的图形展示在这个画板中
plt.figure(figsize=(15, 10))
plt.subplot(1, 1, 1)
# bar() 是条形图,第一个参数是X 的值,第二个参数是Y 的值,第三个参数是解释每个图像代表的含义,这个参数是为legend()函数做铺垫的
# 在值有单个值的情况下,每个柱状图的宽度会随着画板的改变而改变,但是一旦有多个值,这些柱状图就会糊到一起
p2 = plt.bar(index, values, label = 'rainfall', color = 'green')
plt.xlabel('Months')
plt.ylabel('rainfall(mm)')
plt.title('Months-fainfall')
# 设置图例,loc参数是展示的位置
plt.legend(loc='upper right')
# 设置横轴刻度标识
plt.xticks(index, ('Jan', 'Fub', 'Mar', 'Apr', 'May', 'Jun'))
plt.show()

本文介绍了在机器学习中如何使用plot函数,通过实例展示了其生成绿色虚线等图形的功能,帮助读者理解其用法。
1万+

被折叠的 条评论
为什么被折叠?



