外壳扩展编写完全傻瓜指南(三)(Michael Dunn)

Download demo project - 11 Kb    在指南的第一部分和第二部分,我向大家演示了如何编写上下文菜单扩展。在第三部分,我将燕是一种新的扩展类型,向大家解释如何共享外壳的内存,...
  • mefish
  • mefish
  • 2001-10-08 17:48:00
  • 1108

正则化与数据先验分布的关系

转载自知乎:https://www.zhihu.com/question/23536142 先抛给大家一个结论:从贝叶斯的角度来看,正则化等价于对模型参数引入 先验分布 。 一. Linear R...
  • jzwong
  • jzwong
  • 2017-05-31 20:53:18
  • 532

【机器学习】贝叶斯角度看L1,L2正则化

之前总结过不同正则化方法的关系【不过那篇文章被吞了】当时看的资料里面提到了一句话就是:正则化等价于对模型参数引入先验分布,而L1正则化相当于参数中引入拉普拉斯分布先验,而L2分布则相当于引入了高斯分布...
  • haolexiao
  • haolexiao
  • 2017-04-19 21:42:53
  • 3249

从贝叶斯角度深入理解正则化

一、正则化 一般来说,监督学习可以看做最小化下面的目标函数: 其中,第一项L(yi,f(xi;w)) 衡量我们的模型(分类或者回归)对第i个样本的预测值f(xi;w)和真实的标签yi之前的误差...
  • zhuxiaodong030
  • zhuxiaodong030
  • 2017-01-13 15:42:24
  • 4449

正则化理解(一)

机器学习中常常会提到或者用到正则化项,在对目标函数求最优值时,常常通过L1,L2等正则化项来防止过拟合现象,对于正则化可以用来防止模型过拟合现象的问题,展开下讨论,加深理解。 先看着两句话 1. 正...
  • shenxiaoming77
  • shenxiaoming77
  • 2016-02-03 17:23:31
  • 2148

机器学习笔记(二)L1,L2正则化

2.正则化2.1 什么是正则化?(截自李航《统计学习方法》)常用的正则项有L1,L2等,这里只介绍这两种。2.2 L1正则项L1正则,又称lasso,其公式为:​ L1=α∑kj=1|θj|L1=...
  • YoYoDelphine
  • YoYoDelphine
  • 2016-10-21 23:42:17
  • 1579

机器学习:LDA_数学基础_2:贝叶斯数学:先验分布的选择

先验信息确定先验分布 主观概率 对事件似然比 专家意见 历史资料 无信息先验分布 贝叶斯假设 离散均匀分布 有限区间的均匀分布 广义分布 共轭先验分布 在已知样本的情况下,为了理论的需要,常常选择...
  • mijian1207mijian
  • mijian1207mijian
  • 2016-06-10 14:28:37
  • 2325

先验分布、后验分布、共轭分布、共轭先验分布、

参考: http://blog.sina.com.cn/s/blog_b9a335010102vfdf.html 0. 贝叶斯公式 X为抽样样本,P(X)为我们抽到该样本的概率,...
  • xbmatrix
  • xbmatrix
  • 2017-03-18 13:51:26
  • 1916

机器学习之先验分布,后验分布,共轭先验分布

共轭先验分布的提出:某观测数据服从概率分布p(θ),当观测到新的数据时,思考下列问题:1.能否根据新观测数据X更新参数θ;2.根据新观测的数据可以在多大的程度上改变参数θ:θ=θ+rθ;当重新估计得到...
  • hsj1213522415
  • hsj1213522415
  • 2017-02-25 11:06:46
  • 1733

L1 L2正则化及贝叶斯解释

1 L1正则化和L2正则化区别 L1得到的是稀疏权值,可以用于特征选择,假设参数服从Laplace分布(贝叶斯角度理解) L2得到的是平滑权值,因为所有权值都趋于最小,假设参数服从Gauss分布,(...
  • hong__fang
  • hong__fang
  • 2017-10-19 10:19:58
  • 250
收藏助手
不良信息举报
您举报文章:正则化与先验分布
举报原因:
原因补充:

(最多只允许输入30个字)