一、0-1背包问题
(1)、问题描述
背包容量为V,商品数目为N,第i个商品的价值为v[i],第i个商品的体积为v[i],每件商品最多放入一次,
问背包价值最大为多少?
(2)、分析
每件商品最多放入一次,因此每件商品都有两种可能,一种是放入,另一种是不放入。
OK,假设此时我们正要放入第i件商品,那么此时背包的价值为多少呢?
细想一下,会发现此时背包的价值完全取决于放不放第i件商品,
为了方便,设dp[i][j]表示放入第i件商品进入背包容量为j的价值为dp[i][j]
1、不放入第i件商品。
此时dp[i][j]=dp[i-1][j];
意思是:在不放入第i件商品进入容量为j的背包中时,此时背包的价值dp[i][j]应该继承放入第i-1件商品到容量为j的背包时的价值dp[i-1][j];
2、放入第i件商品。
此时dp[i][j]=dp[i-1][j-w[i]]+value[i];
意思是:当前价值(f[i][j])不是前i-1个物品的价值f[i-1][j],因为你放进去了第i件商品,所以这个时候包内的空间就不是j了,而应该是j-c[i],所以说,现在需要继承前i-1个物品占用体积为v-w[i]时的价值,还需要加上当前物品价值wi,所以f[i][j]=f[i-1][j-c[i]]+value[i]
那么在碰见选择时,我们选择一种可以得到最大背包价值的做法,即放与不放。
此时,dp[i][j]=Max{dp[i-1][j],dp[i-1][j-w[i]]+value[i]}
以上便是动态规划方程的推导过程。
public class Version1 {
public static void main(String[] args) {
int v = 10;
int n = 3;
int[] w = { 3, 4, 5 };
int[] value = { 4, 5, 6 };
System.out.println(getMaxweight(w, value, v, n));//11
}
public static int getMaxweight(int[] w, int[] value, int v, int n) {
int[][] dp = new int[n + 1][v + 1];
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= v; j++) {
// 当物品为i件重量为j时,如果第i件的重量(w[i-1])小于重量j时,dp[i][j]为下列两种情况之一:
// (1)物品i不放入背包中,所以dp[i][j]为dp[i-1][j]的值
// (2)物品i放入背包中,则背包剩余重量为j-w[i-1],所以dp[i][j]为dp[i-1][j-w[i-1]]的值加上当前物品i的价值
if (w[i - 1] <= j) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - w[i - 1]] + value[i - 1]);
}
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=v;j++){
System.out.print(dp[i][j]+" ");
}
System.out.println();
}
return dp[n][v];
}
}
下图为根据动态方程推出dp[i][j]的生成过程,从上至下,从左至右。
如dp[3][10]=Max{dp[2][5]+6,dp[2][10]}=Max{11,9}=11;
注:value是价值,w是体积,i是商品编号,v是背包容量。
(3)、优化
注:上面代码用的是二维数组来存储问题的解,其实还可以改用一维滚动数组来存储。
for (int i = 1; i <= N; i++)
for (int j = M; j >= 1; j--) {
if (weight[i] <= j) {
//f[i][j] = max(f[i - 1][j], f[i - 1][j - weight[i]] + value[i]);
//在i-1的基础上
f[j] = max(f[j], f[j - weight[i]] + value[i]);
}
}
1、至于为何要让j从M到1递减,不防动手画下草图就明白为何要逆序而不是正序!!!
2、当明白1的时候,也就明白了这句话的意思:二维数组中的M的正逆序是没有任何影响的!!!
参考—->以下为我对上面两句的理解:
在求解第i个子问题时只用到了第i-1个子问题的解,因此我们想把dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);改写成dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);时,就必须保证方程右边的dp[j]是第i-1个子问题的解,方程左边的dp[j]是第i个子问题的解,为此需要用逆序。
二、完全背包
(1)、问题描述
在n种物品中选取若干件(同一种物品可多次选取)放在空间为v的背包里,每种物品的体积为w1,w2,…,wn,
与之相对应的价值为v1,v2,…,vn.求解怎么装物品可使背包里物品总价值最大?
(2)、分析
首先明白完全背包与0-1背包问题的区别——–>完全背包问题中,每件商品可以放0次,1次,多次。
依然设dp[i][j]代表放入第i件商品进入容量为j的背包时所能得到的背包价值。
那么在放第i件商品时:
1、不放。
dp[i][j]=dp[i-1][j];
意思是:在不放入第i件商品进入容量为j的背包中时,此时背包的价值dp[i][j]应该继承放入第i-1件商品到容量为j的背包时的价值dp[i-1][j]; 此时,与0-1背包一样。
2、放。
dp[i][j]=dp[i][j-w[i]]+value[i];
这是什么意思呢?
如果用的是dp[i-1][j-w[i]],它的意思是说,只有一件当前商品i,所以在放入商品i的时候需要考虑到第i-1个商品在容量为j-c[i]时的价值(f[i-1][j-c[i]]);但是现在有无限件当前商品i,那么就不用再考虑第i-1个物品了,所要考虑的是在当前容量j下是否再装入一个商品i,而[j-w[i]]的意思是指要确保dp[i][j]至少有一件第i件商品,所以要预留w[i]的空间来存放一件第i种物品。
综上可得到动态规划方程:
dp[i][j]=max(dp[i-1][j],dp[i][j-w[i]]+value[i])
for(int i = 0 ; i < n ; i ++) {
for(int j = 1 ; j <= v ; j++) {
if(w[i]<=j)
dp[i][j] = max(dp[i-1][j],dp[i][j-w[i]]+value[i]);
else
dp[i][j]=dp[i-1][j];
}
}
(3)、优化
和0-1背包问题一样,也可以使用一维滚动数组进行优化。
动态方程变为:
dp[j] = max(dp[j],dp[j-w[i]]+value[i])
for (int i = 1; i <= N; i++)
for (int j = 1; j <= M; j++) {
if (weight[i] <= j) {
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
}
}
这里的j是从1到M,即正序。在放入i-1件商品时存在一个Max背包价值,此时放入商品i势必会产生一个新的Max背包价值,这时不像0-1背包那样去考虑前i-1状态,只需考虑当前i状态即可。
三、总结:
0-1背包:在放入第i件商品时,只有放与不放两种选择,此时需考虑放入第i-1件商品时的背包价值。
完全背包:在放入第i件商品时,因为可以放入多次,此时不用考虑放入第i-1商品时的背包价值,应考虑是否可以放入再放入一件商品i。
Every day is a new start。