AI算法程序员的副业,赚了多少

最近写东西感慨很多,本文就当做一个记录和随笔吧。

今年除了工作之外,我的重点都放在了写文章上。截止到今天,已经在公众号上发布了 300+ 篇原创文章,在知乎上也发表了近 400 篇知乎问答。

同时,CSDN 和掘金社区也有涉及,甚至还获得了阿里云社区的专家博主。

坚持写作了一年半了,一直就想总结下,看看自己到底写了啥?

正好今天在家无事,便研究了下微信公众平台的接口,利用接口抓取了部分发表的文章,再加上自己手动添加的文章内容,绘制了一个之前文章的词云图。

果然不出所料: 我是一个 AI 算法博主。

去年 7 月的时候我发了一个朋友圈,在朋友圈宣布开始写文章。

其实当时根本不知道要写什么内容,用什么风格,文章受众是谁,更别提能坚持写多久了。

去年上半年其实就写了 20 篇左右的文章,后来陆续都删掉了,因为感觉写的太差了,事实上也是如此,是真的差。

后来又在拖拖拉拉,时断时续,真正开始坚持日更是从去年 10 月。

短短一年收获了很多:有一起学习的小伙伴、自我成长的成就感、还有微薄到不值一提的收益。和我一起来看看吧。

1、一起学习的小伙伴

从今年下半年开始,就几乎每天都有小伙伴加微信,咨询一些 AI 算法、AI 工作相关的内容。

这其中比较多的是对算法理解的交流,还有对 AI 行业岗位的交流。

关于 AI 行业的岗位拆解文章,其实只写了 4 篇,分别是:算子岗高性能计算部署岗以及量化岗,但却引起了不少小伙伴的关注,也都是去年写的了。今年打算抽出时间来继续多写一些 AI 行业岗位拆解文章,希望能帮助更多正在 AI 行业找工作的人。

这一年来时间,我的微信通讯录人数,由原来的 200 多变成了现在的 900 多。

虽然比认识的一些大佬还差很远(比如认识的某一互联网头部博主,他有好几个微信,加起来微信通讯录总人数据说有几万)。

持续增长的通讯录数字,总能让我感到满满的学习热情。

正是由于这些咨询的存在,也在不断倒逼自己学习,不断去接触更新颖的算法、更前沿的科技。

立个 flag,希望到今年年底的时候,通讯录可以突破到 2000 人,加油奥利给。

2、自我成长的成就感

这一点就有太多感悟了。

坚持原创日更,最煎熬的经常是每天晚上下班之后,却还不知道今天要写什么内容,但是第二天早上一定要发表。

这个时候就会有很多问题出现:比如如何快速选题、如何快速成文、如何坚持写完。

在这几个月的时间里,从最开始 1 个多小时写完一篇文章,到现在可以控制在 1 小时之内,心态也从最开始的不适应到现在逐渐适应,可以说,心态和写作水平都有不少提高。

今年写了几篇阅读量还不错的文章,有9000+阅读​和8000+阅读等等,也在 2023 年结束前,收获了第一篇破万阅读的文章:1.4w+阅读。后来又写了很多文章,也出过5w+阅读的。

对于一个纯技术写作者来说,技术文章出5w+阅读,是真的难。

写作这块,也立一个 flag, 争取今年可以写出 1-2 篇 10w+,虽然心里还没谱。

3、不值一提的收益,强大的正反馈

在决定写作之初,没想过靠写作赚钱。

但是中间陆陆续续停更,无法坚持日更,后来也复盘了一下,最大的原因就在于写作没有正反馈。

相信有不少小伙伴可能也知道,去年博客园卖会员续命的新闻。

博客园从创立之处秉着为爱发电的原则,很少赚钱,却创立了一个很好用的博客网站。但是因为没有盈利,导致坚持不下去,面临着倒闭的风险。

为爱发电的输出,没有持续的正反馈输入和收益,是很可怕的。

两个专栏

于是,在去年 11 月 11 号,我尝试做了一个对我而言有收益的事情。写了一个从零入门计算视觉的专栏,内容全部是硬核知识点讲解和代码实战,让我没想到的是,已经有 220+ 小伙伴订阅支持了。50+ 篇原创知识点讲解,50+ 篇代码实战讲解,也已经全部更新完成,代码也上传达git仓库了。

在完成这个专栏的内容撰写后,我又开始着手进行Transformer架构技术拆解的专栏,因为毕竟现在大模型的火爆,从技术层面都得益于这个技术架构,虽然刚开始写,但是也有60+小伙伴订阅了,非常有成就感。

除了这两个专栏,也尝试接了一些有利于小伙伴成长的广告,当然我也过滤掉了更多不适合我文章风格的广告邀约。

一点广告

其实说实话,广告收入并没有多少。但我觉得,这种少量的收益是在拓宽自己的渠道,多种渠道上的正反馈,会让自己更有动力进行创作。

虽然如此,但看总收益其实还是微不足道,和工作收入比起来,简直杯水车薪。

我之前在朋友圈发过一些文字,大意是说,无论写专栏也好,还是接广告也好,这点收益根本不值得一提,我也不指望这个来赚钱。

但是作为正反馈,这些收益的积极作用却是很大的。

一个AI自媒体

另外,因为本身自己是搞AI的,业余时间也在使用AI做一些自媒体,发现也还不错,有了不少的成绩,光AI自媒体的流量收入,就块赶上其他的收入了。

妥妥的AI提效。今天还在朋友圈发了一张截图,给希望做自媒体的朋友一些信心,尤其是AI自媒体。

最后,总结一下今年写文章的收获:逼着自己学到了更多知识、也变得更加自律,认识了更多 AI 行业的朋友,拓宽了自己的视野,也有了一点收益上的正反馈。

展望一下接下来的时间,立一些 flag 目标吧。

  • 公众号继续坚持日更,今年至少再创作 100 篇优质内容
  • 到年底微信通讯录好友突破 2000
  • 知乎问答突破 1000 条,知乎长文输出 30+ 篇。(貌似有点难)
  • 掘金社区和 CSDN 持续输出文章

最后,祝大家在主业和副业上都能实现自己的愿望。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值