最小二乘法 (Least Squares Method, LS)

本文介绍了回归分析的基本概念,并重点讲解了线性回归及其核心方法——最小二乘法。通过本文,读者可以了解到如何使用线性回归方程来建立自变量与因变量之间的数学模型,并理解最小二乘法在确保数据偏差平方和最小化过程中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

回归分析(regression analysis)是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。

线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。

“最小二乘法”的核心就是保证所有数据偏差的平方和最小 (“平方”的在古时侯的称谓为“二乘”)。

51CTO:线性回归之——最小二乘法 http://sbp810050504.blog.51cto.com/2799422/1269572
科学网:最小二乘法?为神马不是差的绝对值 http://blog.sciencenet.cn/blog-430956-621997.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值