CNN02:Pytorch实现VGG16的CIFAR10分类

本文详细介绍如何使用Pytorch框架实现VGG16网络对CIFAR10数据集进行分类任务。文章首先回顾了VGG16的网络结构和原理,接着提供了完整的Python代码实现,包括网络模型定义、数据加载、模型训练和测试等关键步骤。特别关注了数据预处理、批归一化和Dropout技术的应用。
摘要由CSDN通过智能技术生成

CNN02:Pytorch实现VGG16的CIFAR10分类

1、VGG16的网络结构和原理

VGG的具体网络结构和原理参考博客:
https://www.cnblogs.com/guoyaohua/p/8534077.html
该博客不只讲了VGG还讲了其他卷积神经网络的网络结构,比较详细,容易理解。

2、基于Pytorch的VGG的CIFAR10分类Python代码实现

(1)整体代码:
import torch
import torch.nn as nn
from torch import  optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
from tqdm import tqdm


'''定义超参数'''
batch_size = 256        # 批的大小
learning_rate = 1e-2    # 学习率
num_epoches = 10        # 遍历训练集的次数


'''
transform = transforms.Compose([
    transforms.RandomSizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize(mean = [ 0.485, 0.456, 0.406 ],
                         std  = [ 0.229, 0.224, 0.225 ]),
    ])
'''


'''下载训练集 CIFAR-10 10分类训练集'''
train_dataset = datasets.CIFAR10('./data', train=True, transform=transforms.ToTensor(), download=True)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_dataset = datasets.CIFAR10('./data', train=False, transform=transforms.ToTensor(), download=True)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)


'''定义网络模型'''
class VGG16(nn.Module):
    def __init__(self, num_classes=10):
        super(VGG16, self).__init__()
        self.features = nn.Sequential(
            #1
            nn.Conv2d(3,64,kernel_size=3,padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(True),
            #2
            nn.Conv2d(64,64,kernel_size=3,padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(True),
            nn.MaxPool2d(kernel_size=2,stride=2),
            #3
            nn.Conv2d(64,128,kernel_size=3,padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(True),
            #4
            nn.Conv2d(128,128,kernel_size=3,padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(True),
            nn.MaxPool2d(kernel_size=2,stride=2),
            #5
            nn.Conv2d(128,256,kernel_size=3,padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(True),
            #6
            nn.Conv2d(256,256,kernel_size=3,padding=1),
            nn.BatchNorm2d(256),
            n
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值