Zero-shot Learning 综述(总)——2018年及以前

zero-shot learning

在零次学习(ZSL)中,训练集中的样本标签与测试集的标签是不相交的,即在训练时是没有见过测试集类别的样本的,而零次学习任务就是要识别出这些训练时没见过的类别的样本。既然要认出没见过的对象,那就要教会模型学习到更“本质”的知识,并且将这些知识“举一反三”,从已见过的类别(seen)迁移到没见过的类别(unseen)。在具体的实现中,模型会使用一层语义嵌入层,作为seen类和unseen类的迁移桥梁或者说中间表示,将seen类的知识迁移到unseen类,教会模型”举一反三“。而这个语义嵌入层具体会是对类别的一些描述,具体可能会是人工定义的属性或者词向量等语义表示。

一般的,模型包括以下几个部分:(图1

文章 Learning To Detect Unseen Object Classes by Between-Class Attribute Transfer中描述了ZSL的两种类型:

Direct attribute prediction (DAP)

Indirect attribute prediction (IAP)

后续论文的创新主要建立在图1各个模块上的改进和创新,以及对上述文献中DAP模型的不足之处的改进:

Movtivation/Contribution

其他模型依赖于额外的辅助信息(属性、词向量等)来建立seen类和unseen类之间的迁移——用每个类的类中心(KNN/类均值(NCM)来取代ZSL中对于每个类的语义描述,然后学习一个度量,使得它们在seenunseen类间共享,达到迁移的效果。

不要类别语义信息!!

Movtivation/Contribution

线性映射,从特征空间到语义空间的映射。

Movtivation/Contribution

1. 由于 属性分类器是独立于最终任务学习的,它们在预测属性方面可能是最佳的,但在预测类方面不一定是最佳 的;
2. 希望有一种方法,可以随着新的训练样本的提供而逐步改进,即,如果无标签样本对于某些类是可用的,那么就可以执行 ZSL 预测,当这些类可用时,还可以影响新标记的 样本;
3. 虽然属性是有用的先验信息来源,但其他信息来源也可以用于 ZSL ,例如语义结构,如 Wordnet

Contribution 直接解决对类别的预测问题,而不是简单地对属性进行预测。

直接类别预测,不是属性预测(DAP)

Movtivation/Contribution

skip-gram文字模型对于无标注信息文字的语义信息浮点表示的有效性,该模型通过文档中的邻近项来学习 如何将一个文本表示为一个固定长度的嵌入向量(图1a右图)。由于同义词往往出现在相似的上下文中,所以这个简单的目标函数驱动模型学习语义相关单词的 相似嵌入向量

Contribution词嵌入具体相关性作为视觉神经网络监督信号训练网络

类别语义信息方面的创新!!

Movtivation/Contribution

Contribution 使用了多种辅助语义信息源,致力于取代ZSL的人工标注属性

类别语义信息方面的创新!!

Structured Joint EmbeddingsSJE

Movtivation/Contribution

学习线性兼容函数并不特别适合于具有挑战性的细粒度分类问题。对于细粒度分类,需要一个能够自动将具有相似属性的对象分组在一起的模型,然后为每个组学习一个单独的兼容性模型。例如,可以分别学习两种不同的线性函数来区分棕色翅膀的蓝鸟和其他蓝色翅膀的蓝鸟通过一个隐变量,将SJE模型扩展为非线性

1. 我们提出学习线性模型的集合,同时允许每个图像类别对从中进行选择。这有效地使我们的模型非线性,因为在空间的不同局部区域,决策边界是线性的,是不同的;
2. 提出通过模型裁剪的方式进行快速、有效的模型选择方法

 

多个模型实现非线性,映射方面创新!!

对于K的选取,有两种方法:

1.交叉验证;

2.基于剪枝的策略,该策略既具有竞争优势,又具有更快的训练速度。首先K取大值,并采用以下步骤修剪:

      首先,对于每个样本,都选取一个线性模型进行评分,我们跟踪这些信息,并根据线性模型数量建立一个直方图,计算每个线性模型被选择的次数。根据这个信息,在经过五次训练数据后,删除了选取次数不到选取5%的模型。

LatEm and SJE的不同

1.LatEm为分段线性兼容函数,而SJE是线性的。不同的W针对不同的属性。

2.LatEm使用基于排序的损失,而SJE使用多类别损失。

Movtivation/Contribution

两个不同域的空间的语义差距较大。增加一个中间的共享空间(第三方空间),将两个空间都嵌入该空间里,并且同时进行优化以保持语义一致性。

解决语义间隔问题:视觉特征与语义特征不一致

若目标域的混合比例和源域的混合比例相似,则他们来源于一个类别。

Movtivation/Contribution

训练的可见类和测试的不可见类是不同的,,如果从可见类映射到可视特征上,不可见类图像的映射可能会丢失(漂移——通过自动编码机映射回去解决。)

解决邻域漂移问题:seen特征和unseen的不一样。

Movtivation/Contribution

一般的模型语义空间到视觉空间是一对一映射的,但是文本描述可以对应视觉空间的各种点,是一对多的映射。因此存在偏差。(想象和实际样本之间的偏差)——通过添加噪声对抗学习一对多映射(一个可视化的中枢正则化器)。

解决邻域漂移问题:seen特征和unseen的不一样。

Movtivation/Contribution

1. 不同的嵌入函数语义流行空间 K 不一致,识别性能有差异;
2. 怎么构建有效的 K—— 流行空间对齐
 

解决语义间隔问题:视觉特征与语义特征不一致

Movtivation/Contribution

1. ZSL 假设目标类不能分为源类(二者交集为空),反之亦然。 一些研究尝试用类增量的方法解决该问题
2. 目标类的标签集合一般较小,在 10 到几千之间,相比之下,人能区分的类别至少 30000 人工代价大
3. 源类大量数据是不切实际的,因为很多类别的数据很少(目标的长尾分布); 人工代价大
4. ZSL 中的语义信息来源于开放的词汇集合,没有对源类的学习造成反馈。 —— 本文主要解决的问题点。学习一个监督模型,利用语义词典帮助训练更好的分类器,以区分源类和未观察 ( 目标 ) 类。

 

不可见类的属性信息在训练时没有使用!!

训练时利用整个词汇语义信息W进行学习,与ZSL不同的是,ZSL仅在测试时用到了测试类别的语义信息,而SS-Voc在训练时也使用了相同的语义信息

Movtivation/Contribution

其他模型需要复杂的inference机制,专注于嵌入函数的设计和预定义的特征之间的度量(欧式距离)该模型侧重于可迁移的深度度量(关系模型),提出一个包含ZSLFSL的框架。

特征嵌入到属性空间后与属性之间的关系度量!!!

Movtivation/Contribution

1. 人工特征或 CNN 不具备代表性 —CNN 参与训练;
2. 人工语义特征不充分 —— 训练潜在语义特征;
3. 缺少统一框架处理低层特征和嵌入特征 —— 一个框架

 

图像特征方面参与训练,语义特征方面挖掘潜在语义!!

上述文章的详细内容见后续Zero-shot Learning 综述1-4

 

  • 4
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值