OCR-场景文字检测
小灰狼@花花
这个作者很懒,什么都没留下…
展开
-
TextBoxes与TextBoxes++ OCR场景文字检测
TextBoxes提出了一种端到端可训练的快速场景文本检测器,名为TextBoxes,它可以在单个网络正向通道中以高精度和高效率检测场景文本,除标准非最大抑制外,不涉及后处理。TextBoxes在文本定位精度方面优于其他竞争方法,并且速度更快,每张图片只需0.09s便可快速实现。此外,与文本识别器相结合,TextBoxes明显优于最先进的文字识别和端到端文本识别任务。网络结构:72 = 12 * 6, 6为2+4它继承了流行的VGG-16体系结构(Simonyan和Zisserman.原创 2020-07-20 10:51:58 · 837 阅读 · 0 评论 -
EAST OCR目标检测及源码
EAST: An Efficient and Accurate Scene Text Detector用于场景文本检测的先前方法已经在各种基准测试中获得了良好的性能。然而,在处理具有挑战性的场景时,即使配备了深度神经网络模型,通常也会达不到很好性能,因为整体性能取决于pipline中多个阶段和组件的相互作用。EAST提出了一个简单而强大的pipline,可以在自然场景中产生快速准确的文本检测。算法流程直接预测完整图像中任意方向和四边形形状的单词或文本行,消除了使用单个神经网络的不必要的中间步骤(例.原创 2020-07-17 11:02:17 · 1181 阅读 · 0 评论 -
CTPN OCR目标检测及源码
CTPN-Detecting Text in Natural Image with Connectionist Text Proposal NetworkCTPN,它能够准确定位自然图像中的文本行。CTPN直接在卷积特征图中的一系列细粒度文本建议中检测文本行。CTPN提出了一个垂直锚点机制,联合预测每个固定宽度提议的位置和文本/非文本分数,大大提高了定位精度。序列建议网络通过循环神经网络自然地连接起来,该网络无缝地结合到卷积网络中,从而形成端到端的可训练模型。这使得CTPN可以探索丰富的图像上下文.原创 2020-07-16 17:30:02 · 844 阅读 · 0 评论