机器学习+材料到底有多火?Nature、Scienc、JACS、Angew等23篇顶刊告诉你!

机器学习结合材料基因组技术正在加速新材料的研发。从Nature到Science等顶级期刊,研究展示了如何利用机器学习算法预测材料性能,减少实验次数,提升设计效率。近期的研究涵盖了高熵合金、量子蒙特卡洛方法、AI创造新蛋白质等领域,展现出机器学习在材料科学中的广泛应用前景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

机器学习(ml)在材料的应用:面对巨大的材料设计空间,基于理论研究、实验分析以及计算仿真的传统方法已经跟不上高性能新材料的发展需求。近年来,机器学习与材料基因组的结合带动了材料信息学的进步,推动了材料科学的发展。当前,运用数据驱动的机器学习算法建立材料性能预测模型,然后将其应用于材料筛选与新材料开发的研究引起了学者们的广泛关注。利用机器学习框架搭建材料研究设计平台对材料大数据资源进行分析与预测,成为开发新型材料的重要手段。包括根据预测对象确定材料特征的计算或自动抽取,不同精度的实验与计算数据的获取与预处理;选取或者开发合适的机器学习预测模型和训练算法;估计预测效果与预测性能的可靠性;处理材料机器学习问题所独有的小数据、异构数据、非平衡数据等特性。目前研究的焦点是针对不同的材料性能,收集相关的数据集,基于物理原理构造特征表示来训练机器学习模型,并将机器学习的最新技术用于材料信息学。现阶段机器学习已经被应用于光伏、热电、半导体、有机材料等几乎所有的材料设计领域。通过采用机器学习算法训练材料性能的预测模型,并将其用于筛选现有材料数据库或者搜索新的材料,大大加快了新材料发现的过程。机器学习在材料科学的研究应用文章近两年来多次发表在Nature、Science、Angew、Advanced Materials、JACS、Nano Letters、ACS Catalysis、Joule、Matter、Energy Storage Materials等国际知名顶刊。例如最近德国马普钢铁研究所韦业博士与Dierk Raabe教授(共同通讯)联合提出了一种主动学习策略,以基于非常稀少的数据,在几乎无限的成分空间中加速高熵因瓦合金的设计。该研究方法是一个闭环,将机器学习与密度泛函理论、热力学计算和实验相结合。研究人员首先使用了699种合金的公开数据训练了学习算法,然后让算法生成大量具有低热系数的候选成分,在加工和表征了17种可能的新合金后,研究人员确定了两种热膨胀系数极低的高熵因瓦合金(在300 K下为约为2×10-6 K-1)。文献链接:Machine learningenab

<think>好的,用户之前已经询问过如何拼接网址进行爬虫,现在他们又提出了一个具体的例子,想要知道如何拼接类似Science期刊的网址,比如将基础URL和DOI组合起来。我需要先回顾之前的回答,确保这次回答在结构上保持一致,同时针对新的例子进行调整。 首先,用户给出的例子是https://www.science.org/doi/epdf/加上DOI,这看起来是一个直接拼接的情况。但可能需要确认DOI的格式是否正确,比如是否包含斜杠,是否需要编码处理。之前的指南提到了使用urllib.parse来处理复杂参数,但这里的情况可能更简单,因为是路径拼接而不是查询参数。 接下来,我需要考虑用户可能的实际需求。他们可能希望批量下载Science期刊的文章,通过已知的DOI列表生成对应的PDF链接。这时候需要确保DOI的正确性,以及处理可能的访问限制,比如需要订阅或者认证。 用户可能没有明确提到的深层需求包括:是否需要处理DOI中的特殊字符,是否需要处理403禁止访问的情况,以及如何绕过反爬机制,比如设置User-Agent和使用延迟。此外,用户可能还需要知道如何保存下载的PDF文件,以及如何处理异常情况,比如DOI无效或链接不存在。 在之前的回答中,已经提到了使用f-string拼接和urllib.parse的方法,但这里的情况是路径拼接,所以直接使用字符串连接即可。不过需要确保DOI本身是否以斜杠开头,或者是否需要去除某些字符。例如,DOI通常是类似10.1126/science.abc1234的格式,直接拼接到基础URL后面即可。 另外,需要提醒用户注意法律和道德规范,确保他们有权限下载这些PDF,避免侵犯版权。同时,Science网站可能有反爬措施,频繁请求可能导致IP被封,所以需要建议使用延迟、代理轮换等策略。 最后,给出一个具体的代码示例,展示如何遍历DOI列表,拼接URL,并尝试下载PDF,同时处理可能出现的错误,如403或404。还要强调检查robots.txt,尊重网站的爬取规则。 总结步骤: 1. 分析目标URL结构,确认拼接方式。 2. 处理DOI中的特殊字符(如需要)。 3. 设置请求头模拟浏览器访问。 4. 实现延迟和错误处理。 5. 保存下载的文件。 6. 遵守法律和网站规定。 需要确保回答结构清晰,逐步引导用户完成操作,并覆盖所有可能的注意事项。</think>--- ### 分步骤实现 Science 期刊 PDF 网址拼接爬取 --- #### 一、分析目标 URL 结构 Science 期刊的 PDF 链接格式为: $$https://www.science.org/doi/epdf/[DOI值]$$ **示例**: 若 DOI 为 `10.1126/science.abc1234`,完整 URL 则为: $$https://www.science.org/doi/epdf/10.1126/science.abc1234$$ --- #### 二、Python 实现步骤 ##### 1. **基础拼接方法** ```python base_url = "https://www.science.org/doi/epdf/" doi = "10.1126/science.abc1234" # 替换为目标 DOI pdf_url = base_url + doi print(pdf_url) # 输出:https://www.science.org/doi/epdf/10.1126/science.abc1234 ``` ##### 2. **批量处理 DOI 列表** ```python dois = [ "10.1126/science.1234567", "10.1126/science.a987654", "10.1126/science.xyz0001" ] for doi in dois: pdf_url = f"https://www.science.org/doi/epdf/{doi}" print("待抓取链接:", pdf_url) ``` --- #### 三、实战爬取代码 ```python import requests from time import sleep import os headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36", "Referer": "https://www.science.org/" # 添加来源标识 } def download_pdf(doi, save_dir="pdfs"): # 创建存储目录 os.makedirs(save_dir, exist_ok=True) # 拼接 URL pdf_url = f"https://www.science.org/doi/epdf/{doi}" try: response = requests.get(pdf_url, headers=headers) if response.status_code == 200: # 生成文件名(用 DOI 斜杠替换为下划线) filename = doi.replace("/", "_") + ".pdf" filepath = os.path.join(save_dir, filename) # 保存 PDF with open(filepath, "wb") as f: f.write(response.content) print(f"✅ 成功下载: {filename}") else: print(f"❌ 下载失败(状态码 {response.status_code}): {doi}") except Exception as e: print(f"⚠️ 异常错误: {str(e)}") # 示例调用 dois = ["10.1126/science.1234567", "10.1126/science.a987654"] for doi in dois: download_pdf(doi) sleep(2) # 重要!降低请求频率 ``` --- ### 四、关键注意事项 1. **DOI 合法性验证** - 确保 DOI 格式正确(例如 `10.1126/` 开头) - 检查 DOI 是否对应开放获取论文(非开放论文需权限) 2. **反爬策略** - **延迟设置**:每次请求间隔 ≥2 秒(`sleep(random.uniform(2, 5))` 更安全) - **请求头伪装**:使用真实浏览器 UA,添加 `Referer` 字段 - **代理 IP**:高频访问需使用代理池(如 `requests.get(..., proxies={"http": "ip:port"})`) 3. **访问权限问题** - 若返回 `403 Forbidden`,说明目标 PDF 需要订阅或登录 - 合法获取方式:通过机构网络访问,或使用已授权的 API Key --- ### 五、高级场景处理 1. **DOI 含特殊字符** 使用 `urllib.parse.quote` 编码处理: ```python from urllib.parse import quote encoded_doi = quote("10.1126/science.ai_2023") pdf_url = f"https://www.science.org/doi/epdf/{encoded_doi}" ``` 2. **自动化 DOI 提取** 若需从网页批量提取 DOI,可使用正则匹配: ```python import re html_content = requests.get("https://www.science.org/journal").text dois = re.findall(r'10\.1126/science\.\w+', html_content) ``` --- ### 六、法律道德提醒 1. **遵守 `robots.txt`** 检查 `https://www.science.org/robots.txt`,确认允许爬取的路径 2. **版权限制** 仅爬取已获得授权的文献(如开放获取资源) 3. **控制频率** 单 IP 请求频率建议 ≤1 次/秒 --- 通过以上方法可实现 Science 期刊 PDF 链接的精准拼接安全爬取。建议优先使用官方提供的 API 接口(若有),以保障数据获取的合法性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值